[1]傅 鹏,谢世朋.基于级联卷积神经网络的车牌定位[J].计算机技术与发展,2018,28(01):134-137.[doi:10.3969/ j. issn.1673-629X.2018.01.029]
 FU Peng,XIE Shi-peng.License Plate Location Based on Cascaded Convolution Neural Network[J].Computer Technology and Development,2018,28(01):134-137.[doi:10.3969/ j. issn.1673-629X.2018.01.029]
点击复制

基于级联卷积神经网络的车牌定位()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年01期
页码:
134-137
栏目:
智能、算法、系统工程
出版日期:
2018-01-10

文章信息/Info

Title:
License Plate Location Based on Cascaded Convolution Neural Network
文章编号:
1673-629X(2018)01-0134-04
作者:
傅 鹏谢世朋
南京邮电大学 通信与信息工程学院,江苏 南京 210003
Author(s):
FU PengXIE Shi-peng
School of Communication and Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
关键词:
车牌定位运动目标检测视觉特性卷积神经网络
Keywords:
license plate locationmoving target detectionhuman visual characteristicsconvolution neural network
分类号:
TP301.6
DOI:
10.3969/ j. issn.1673-629X.2018.01.029
文献标志码:
A
摘要:
针对多车辆、低分辨率等复杂环境下的车牌定位问题,提出了一种基于人眼视觉特性的车牌识别方法。 通过模仿人眼视觉原理,利用级联卷积神经网络分层提取目标区域特征,逐步缩小搜索区域的方法,实现车牌的精准定位。 首先通过运动目标检测算法定位出目标运动热点区域;然后使用卷积神经网络识别热点区域中的车辆;最后使用卷积神经网络从定位的车辆图片中识别车牌。 数据集采集于多个交通路口的天网摄像头,然后对 5 000 幅图像,约 15 000 个目标进行人工标注,同时对训练图片进行随机变换,从而提高训练的有效性。 实验结果表明,通过提取运动区域可提升卷积神经网络运行的速度和识别的精度。 相比于传统车牌识别算法,提出的方法极大地提高了复杂场景下的车牌识别率,同时在处理高分辨率的图片时具有更高的车牌定位率。
Abstract:
Aiming at the problem of license plate positioning in complex environments such as multi-vehicle and low resolution,we present a license plate recognition method based on human vision. By imitating the visual principle of human eyes,the precise positioning of license plate is realized by the approach of extraction of target region characteristics through cascade convolution neural network and gradually narrowing the search area. Firstly,the target motion region which we are interested in is located by the motion detection. Then,the vehicle identification is performed on the hot spot region by convolutional neural network. Finally,license plates are located in vehicle picture. Training pictures are collected in 20 different traffic junctions of the skynet camera images,as well as nearly 5 000 images and about 15 000 targets labeled by manual. At the same time,the labeled images are transformed randomly to improve the effectiveness of the training. According to the experiments,the extraction of motion region enhances the speed and recognition precision of convolutional neural network,and greatly
improves the license plate recognition rate in complex scenes compared to the traditional license plate recognition algorithm. Moreover,it performs better in dealing with high-resolution pictures.

相似文献/References:

[1]黄鑫娟 房岩 周洁敏 刘伯扬 王占军 陶思钰.基于改进模糊熵的车牌定位方法[J].计算机技术与发展,2010,(01):189.
 HUANG Xin-juan,FANG Yan,ZHOU Jie-min,et al.A License Plate Location Method Based on Improved Fuzzy Entropy[J].Computer Technology and Development,2010,(01):189.
[2]郭航宇 景晓军 尚勇.基于小波变换和数学形态法的车牌定位方法研究[J].计算机技术与发展,2010,(05):13.
 GUO Hang-yu,JING Xiao-jun,SHANG Yong.License Plate Location Method Based on Wavelet Transform and Mathematical Morphology[J].Computer Technology and Development,2010,(01):13.
[3]张玉荣 涂铮铮 罗斌.基于帧差和小波包分析算法的运动目标检测[J].计算机技术与发展,2008,(01):136.
 ZHANG Yu-rong,TU Zheng-zheng,LUO Bin.Moving Object Detection Method Based on Frame- Difference and Wavelet Packets Analysis[J].Computer Technology and Development,2008,(01):136.
[4]王森 陈炬桦.基于神经网络和综合特征的车牌定位算法[J].计算机技术与发展,2008,(02):38.
 WANG Sen,CHEN Ju-hua.Algorithm of Car Plate Location Based on Neural Network and Integrated Features[J].Computer Technology and Development,2008,(01):38.
[5]杨述斌 张阳.复杂车辆图像中的车牌快速形态定位算法[J].计算机技术与发展,2008,(06):50.
 YANG Shu-bin,ZHANG Yang.Fast Morphological Locating Algorithm of Vehicle License Plate in Complex Vehicle Images[J].Computer Technology and Development,2008,(01):50.
[6]郭旭 张丽杰.运动目标检测视频监控软件的设计与实现[J].计算机技术与发展,2010,(08):199.
 GUO Xu,ZHANG Li-jie.Design and Implementation of Moving Target Detection Video Surveillance Software[J].Computer Technology and Development,2010,(01):199.
[7]夏伟才 曾致远.一种基于卡尔曼滤波的背景更新算法[J].计算机技术与发展,2007,(10):134.
 XIA Wei-cai,ZENG Zhi-yuan.Background Update Algorithm Based on Kalman Filtering[J].Computer Technology and Development,2007,(01):134.
[8]王陈阳 周明全 耿国华.基于自适应背景模型运动目标检测[J].计算机技术与发展,2007,(04):21.
 WANG Chen-yang,ZHOU Ming-quan,GENG Guo-hua.Moving Object Detection Based on Adaptive Background Model[J].Computer Technology and Development,2007,(01):21.
[9]朱光忠 黄云龙 余世明.边缘检测算子在汽车牌照区域检测中的应用[J].计算机技术与发展,2006,(03):161.
 ZHU Guang-zhong,HUANG Yun-long,YU Shi-ming.Application of Edge Detection Operators in Region Detection of Automobile License Plate[J].Computer Technology and Development,2006,(01):161.
[10]李波 曾致远 周建中 罗勤.车牌识别系统研究与实现[J].计算机技术与发展,2006,(06):10.
 LI Bo,ZENG Zhi-yuan,ZHOU Jian-zhong,et al.Study and Realization for License Plate Recognition System[J].Computer Technology and Development,2006,(01):10.

更新日期/Last Update: 2018-03-13