[1]谭程午,夏利民,王 嘉.基于融合特征的群体行为识别[J].计算机技术与发展,2018,28(01):17-22.[doi:10.3969/ j. issn.1673-629X.2018.01.004]
 TAN Cheng-wu,XIA Li-min,WANG Jia.Recognition of Human Group Action Based on Fusion Features[J].Computer Technology and Development,2018,28(01):17-22.[doi:10.3969/ j. issn.1673-629X.2018.01.004]
点击复制

基于融合特征的群体行为识别()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年01期
页码:
17-22
栏目:
智能、算法、系统工程
出版日期:
2018-01-10

文章信息/Info

Title:
Recognition of Human Group Action Based on Fusion Features
文章编号:
1673-629X(2018)01-0017-06
作者:
 谭程午1 夏利民1 王 嘉2
1. 中南大学 信息科学与工程学院,湖南 长沙 410075;
2. 国防科技大学 训练部,湖南 长沙 410073
Author(s):
TAN Cheng-wu 1 XIA Li-min 1 WANG Jia 2
1. School of Information Science and Engineering,Central South University,Changsha 410075,China;
2. Department of Training,National University of Defense Technology,Changsha 410073,China
关键词:
群体行为识别特征融合Granger 因果支持向量机
Keywords:
group action recognitionfeature fusionGranger causalitySVM
分类号:
TP301.6
DOI:
10.3969/ j. issn.1673-629X.2018.01.004
文献标志码:
A
摘要:
围绕群体行为的特征提取问题展开研究,提出了一种基于融合运动特征和外观特征的群体行为识别方法。 为了更有效地描述识别信息,首先将各行人目标看成网络的节点,利用协方差跟踪获得目标的运动轨迹,同时利用格兰杰因果关系检
验来衡量行人之间的相互作用;然后利用此因果关系来构建成双因果网络和成群因果网络,将其作为运动特征,并结合外观特征来描述群体行为。 最后,采用改进萤火虫算法的支持向量机(SVM)进行群体行为识别。 实验结果表明,提出的算法能够对群体行为进行有效的表达和识别。
Abstract:
Based on the study of feature extraction of group behavior,we propose a group action recognition method based on fusion movement characteristics and appearance characteristics. In order to effectively describe the identification information,the trajectories of each pedestrians are calculated by covariance tracking to gain the nodes of crowd network. The Granger causality test is used to estimate the relationship between pedestrians. Based on these causations,two types of complex network are generated which are pair-complex network and group-complex network,and the appearance information is also included in the description of group actions. Finally,we adopt the support vector machine (SVM) based on the improved glowworm swarm optimization (GSO) to recognize human group action. Experiment shows that the proposed method can express and recognize group action effectively.

相似文献/References:

[1]周伟 武港山.基于显著图的花卉图像分类算法研究[J].计算机技术与发展,2011,(11):15.
 ZHOU Wei,WU Gang-shan.Research on Saliency Map Based Flower Image Classification Algorithm[J].Computer Technology and Development,2011,(01):15.
[2]黎粤华,单磊,田仲富,等. 基于多特征融合的视频烟雾检测[J].计算机技术与发展,2016,26(01):129.
 LI Yue-hua,SHAN Lei,TIAN Zhong-fu,et al. Video Smoke Detection Based on Multi Feature Fusion Technology[J].Computer Technology and Development,2016,26(01):129.
[3]刘加运,李玉惠,李勃,等. 一种多维特征融合的车辆对象同一性匹配方法[J].计算机技术与发展,2016,26(04):167.
 LIU Jia-yun,LI Yu-hui,LI Bo,et al. A Vehicle Object Identity Matching Method of Multidimensional Feature Combination[J].Computer Technology and Development,2016,26(01):167.
[4]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].Computer Technology and Development,2016,26(01):19.
[5]张雅倩,曾卫明,石玉虎.基于特征融合与稀疏表示的人耳识别[J].计算机技术与发展,2017,27(12):7.
 ZHANG Ya-qian,ZENG Wei-min,SHI Yu-hu.Ear Recognition Based on Feature Fusion and Sparse Representation[J].Computer Technology and Development,2017,27(01):7.
[6]王 敏,陈立潮,曹建芳,等.Hadoop 下自适应随机权值多特征融合图像分类[J].计算机技术与发展,2018,28(11):30.[doi:10.3969/ j. issn.1673-629X.2018.11.007]
 WANG Min,CHEN Li-chao,CAO Jian-fang,et al.Multi-feature Fusion Image Classification of Adaptive Random Weight Based on Hadoop[J].Computer Technology and Development,2018,28(01):30.[doi:10.3969/ j. issn.1673-629X.2018.11.007]
[7]韩欣欣,叶奇玲.基于 SIFT 和 HOG 特征融合的人体行为识别方法[J].计算机技术与发展,2019,29(06):71.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 015]
 HAN Xin-xin,YE Qi-ling.Human Action Recognition Based on Feature Fusion of SIFT and HOG[J].Computer Technology and Development,2019,29(01):71.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 015]
[8]宋相法,吕 明.融合三维骨架和深度图像特征的人体行为识别[J].计算机技术与发展,2019,29(07):55.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 011]
 SONG Xiang-fa,LYU Ming.Human Activity Recognition Based on Fusing 3D Skeleton and Depth Image Feature[J].Computer Technology and Development,2019,29(01):55.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 011]
[9]王泽泓,刘厚泉.基于迁移学习与自适应特征融合的建筑物识别[J].计算机技术与发展,2019,29(12):40.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 007]
 WANG Ze-hong,LIU Hou-quan.Building Recognition Based on Transfer Learning and Adaptive Feature Fusion[J].Computer Technology and Development,2019,29(01):40.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 007]
[10]张雪梅,公维宾,邬建志,等.基于纹理特征融合的人脸表情识别[J].计算机技术与发展,2020,30(03):57.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 011]
 ZHANG Xue-mei,GONG Wei-bin,WU Jian-zhi,et al.Facial Expression Recognition Based on Texture Feature Fusion[J].Computer Technology and Development,2020,30(01):57.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 011]

更新日期/Last Update: 2018-03-09