[1]张雅倩,曾卫明,石玉虎.基于特征融合与稀疏表示的人耳识别[J].计算机技术与发展,2017,27(12):7-10.
 ZHANG Ya-qian,ZENG Wei-min,SHI Yu-hu.Ear Recognition Based on Feature Fusion and Sparse Representation[J].,2017,27(12):7-10.
点击复制

基于特征融合与稀疏表示的人耳识别()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年12期
页码:
7-10
栏目:
智能、算法、系统工程
出版日期:
2017-12-10

文章信息/Info

Title:
Ear Recognition Based on Feature Fusion and Sparse Representation
作者:
张雅倩曾卫明石玉虎
上海海事大学 信息工程学院,上海 201306
Author(s):
ZHANG Ya-qianZENG Wei-minSHI Yu-hu
School of Information Engineering,Shanghai Maritime University,Shanghai 201306,China
关键词:
人耳识别模式识别特征融合稀疏表示图像处理
Keywords:
ear recognitionmode recognitionfeature fusionsparse representationimage processing
分类号:
TP301
文献标志码:
A
摘要:
人耳识别是一种新兴的生物识别技术,具有较高的理论研究价值和市场应用前景,并随着图像处理、模式识别等领域的发展而逐步发展。 在人耳识别中特征提取是生物特征识别技术的关键环节,对最终分类结果的准确性起着决定性作用。 因此为了提高人耳识别技术中分类结果的正确率,提出了一种基于特征融合和稀疏表示的人耳识别方法。 该方法采用四个方向上的 Sobel 算子检测边缘,并在每个边缘图上提取边缘特征;同时利用灰度共生矩阵提取四个方向上人耳图像的纹理特征,结合边缘特征和纹理特征,最后通过稀疏表示模型对人耳进行分类识别。 实验结果表明,采用边缘特征和纹理特征相融合的方法能较大提升人耳识别的准确率,从而验证了该方法在人耳识别技术中的有效性能。
Abstract:
Ear recognition is an emerging biometric recognition technology,with high theoretical research value and market prospect,and develops gradually with the development of image processing,pattern recognition and other fields. Feature extraction is the key to this technology which plays a decisive role in the accuracy of the final classification result. Therefore,in order to improve the accuracy of classification result in the technology of ear recognition,a method of ear recognition based on feature fusion and sparse representation is pres ented. In this method,the Sobel operator from four direction is adopted to detect the edges and extract their feature. At the same time the
GLCM (Gray Level Co-occurrence Matrix) is used to extract texture feature of ear images. Finally sparse representation model is utilized to conduct classification recognition of ear in combination of edge and texture features. The experiment shows that the proposed method can improve ear recognition accuracy greatly,thus confirming its effectiveness in the survey of ear recognition.

相似文献/References:

[1]鲁晓南 接标.一种基于个性化邮件特征的反垃圾邮件系统[J].计算机技术与发展,2009,(08):155.
 LU Xiao-nan,JIE Biao.An Individual Anti- Spam Technology[J].,2009,(12):155.
[2]杨盈 李朝峰.基于距离学习法的模式识别[J].计算机技术与发展,2009,(03):77.
 YANG Ying,LI Chao-feng.Learning Using Distance Based Training Algorithm for Pattern Recognition[J].,2009,(12):77.
[3]张充 史青宣 苗秀芬 杨芳 田学东.基于BP神经网络的手写体数字识别[J].计算机技术与发展,2008,(06):128.
 ZHANG Chong,SHI Qing-xuan,MIAO Xiu-fen,et al.Handwritten Numeral Recognition Based on BP Neural Network[J].,2008,(12):128.
[4]万忠 张铃 张燕平 陈洁.基于覆盖算法的两层结构分类器设计[J].计算机技术与发展,2007,(01):65.
 WAN Zhong,ZHANG Ling,ZHANG Yah-ping,et al.A Two- Layer Classifier Design Method Based on Covering Algorithm[J].,2007,(12):65.
[5]宋丹 徐蔚鸿.基于模糊理论的车型识别[J].计算机技术与发展,2006,(03):47.
 SONG Dan,XU Wei-hong.Recognition of Automobile Type Based on Fuzzy Theoretics[J].,2006,(12):47.
[6]陈晓艳 董朝轶 李永亭 刘月文.基于多层感知器网络的农作物疾病诊断系统[J].计算机技术与发展,2011,(11):84.
 CHEN Xiao-yan,DONG Chao-yi,LI Yong-ting,et al.Study of Diagnosis for Diseases of Agricultural Crops Based on Multi-Layer Perceptrom Networks[J].,2011,(12):84.
[7]汪晨 张涛 林为民 邓松 时坚 李伟伟.图像识别综述及在电力信息安全中的应用研究[J].计算机技术与发展,2012,(04):161.
 WANG Chen,ZHANG Tao,LIN Wei-min,et al.Image Recognition Review and Application Research in Electric Power Information Security[J].,2012,(12):161.
[8]陈静,邱晓晖,孙娜. 基于二维Gabor小波与SPP算法的人脸识别研究[J].计算机技术与发展,2014,24(11):110.
 CHEN Jing,QIU Xiao-hui,SUN Na. Research on Face Recognition Based on 2 D Gabor Wavelet and SPP Algorithm[J].,2014,24(12):110.
[9]檀何凤,刘政怡. 模式分类方法比较研究[J].计算机技术与发展,2015,25(02):99.
 TAN He-feng,LIU Zheng-yi. Research on Comparison of Pattern Classification Method[J].,2015,25(12):99.
[10]楚浩宇,高 萌,刘永生.基于并行组合分类器的脱机手写体数字识别[J].计算机技术与发展,2018,28(03):105.[doi:10.3969/ j. issn.1673-629X.2018.03.022]
 CHU Hao-yu,GAO Meng,LIU Yong-sheng.Off-line Handwritten Digit Recognition Based on Parallel Combined Classifiers[J].,2018,28(12):105.[doi:10.3969/ j. issn.1673-629X.2018.03.022]

更新日期/Last Update: 2018-03-02