[1]朱庆生,付飘飘,张程. 基于自然邻的自适应谱聚类算法[J].计算机技术与发展,2017,27(11):19-23.
 ZHU Qing-sheng,FU Piao-piao,ZHANG Cheng. An Adaptive Spectral Clustering Algorithm Based on Natural Neighbor[J].,2017,27(11):19-23.
点击复制

 基于自然邻的自适应谱聚类算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年11期
页码:
19-23
栏目:
智能、算法、系统工程
出版日期:
2017-11-10

文章信息/Info

Title:
 An Adaptive Spectral Clustering Algorithm Based on Natural Neighbor
文章编号:
1673-629X(2017)11-0019-05
作者:
 朱庆生付飘飘张程
 重庆大学 计算机学院
Author(s):
 ZHU Qing-shengFU Piao-piaoZHANG Cheng
关键词:
 谱聚类自然邻自适应尺度参数聚类数目
Keywords:
 spectral clusteringnatural neighboradaptivescaling parameternumber of clustering
分类号:
TP301
文献标志码:
A
摘要:
 
在传统谱聚类算法中,构造相似矩阵时需要人为输入尺度参数;除此之外,之后的k-means过程中还需要人工输入确切的聚类数目,而以上两个参数对聚类效果影响巨大.针对以上问题,提出了一种基于自然邻的自适应谱聚类算法.该算法不需要人为输入任何参数,完全实现自适应,主要方式是通过自然邻算法获取各点之间的邻近信息,其中包括自然邻个数、自然逆邻个数、自然邻居集以及自然逆邻居集.通过实例分析,在多重尺度数据集下或者在流行数据集中,充分利用以上先验信息构造出更加符合实际情况的相似矩阵.另外,根据近邻传播思想获得聚类数目.将该算法运用于部分人工数据集上,且与谱聚类算法进行比较,聚类效果显著改进.实验结果表明,该算法具有一定的有效性和优越性.
Abstract:
 In traditional spectral clustering algorithm,the input scaling parameters are needed to construct the similar matrix. In addition, the exact number of clusters is needed to be input in the subsequent k-means process. The above two parameters have a huge influence on the clustering effect. Aiming at the above problems,an adaptive spectral clustering algorithm based on natural neighbors is proposed. It does not need to input any parameters artificially and can achieve complete self-adaptation,the main way of which is to obtain the prox-imity information between the points by the natural neighbor algorithm, including the number of natural neighbors and inverse natural neighbors,the natural neighbor sets and the inverse natural neighbor sets. Through the case analysis,in the multi-scale or popular data set,the above priori information is made full use of to construct a similarity matrix more consistent with the actual situation. In addition, the number of clusters is gained according to the idea of spread of neighbors. The algorithm is applied to some artificial data sets,and compared with the spectral clustering algorithm,improving the clustering effect remarkably. Experimental results show that it has certain validity and superiority.

相似文献/References:

[1]沈亚田 沈夏炯 张磊.基于图划分的谱聚类算法在文本挖掘中应用[J].计算机技术与发展,2009,(05):96.
 SHEN Ya-tian,SHEN Xia-jiong,ZHANG Lei.Application of Spectral Cluster Algorithm Based on Graph Partition in Text Mining[J].,2009,(11):96.
[2]王春雪 王继成 郑吉.谱聚类在图像检索中的应用[J].计算机技术与发展,2009,(01):207.
 WANG Chun-xue,WANG Ji-cheng,ZHENG Ji.Application of Spectral Clustering in Image Retrieval[J].,2009,(11):207.
[3]贾志先.考试数据分析及孤立点检测的谱聚类方法[J].计算机技术与发展,2013,(01):103.
 JIA Zhi-xian.Spectral Clustering Method for Exam Data Analysis and Outlier Detection[J].,2013,(11):103.
[4]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(11):1.
[5]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(11):5.
[6]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(11):13.
[7]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(11):21.
[8]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(11):25.
[9]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(11):29.
[10]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(11):34.
[11]李振博,徐桂琼,査九. 基于用户谱聚类的协同过滤推荐算法[J].计算机技术与发展,2014,24(09):59.
 LI Zhen-bo,XU Gui-qiong,ZHA Jiu. A Collaborative Filtering Recommendation Algorithm Based on User Spectral Clustering[J].,2014,24(11):59.
[12]胡海峰[][],刘萍萍[]. 一种基于特征间隙的检测簇数的谱聚类算法[J].计算机技术与发展,2015,25(09):37.
 HU Hai-feng[][],LIU Ping-ping[]. A Spectral Clustering Algorithm with Identifying Clustering Number Based on Eigengap[J].,2015,25(11):37.
[13]李扬,陆璐,崔红霞. 谱聚类图像分割中相似度矩阵构造研究[J].计算机技术与发展,2016,26(07):55.
 LI Yang,LU Lu,CUI Hong-xia. Research on Similarity Matrix Structure in Spectral Clustering Image Segmentation[J].,2016,26(11):55.

更新日期/Last Update: 2017-12-25