[1]高卉[],冯友宏[][],王晓雨[]. 认知无线传感网络中吞吐量能耗均衡研究[J].计算机技术与发展,2017,27(10):130-135.
 GAO Hui[],FENG You-hong[][],WANG Xiao-yu[]. Research on Tradeoff of Energy Consumption and Throughput in Cognitive Wireless Sensor Networks[J].,2017,27(10):130-135.
点击复制

 认知无线传感网络中吞吐量能耗均衡研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年10期
页码:
130-135
栏目:
应用开发研究
出版日期:
2017-10-10

文章信息/Info

Title:
 Research on Tradeoff of Energy Consumption and Throughput in Cognitive Wireless Sensor Networks
文章编号:
1673-629X(2017)10-0130-06
作者:
 高卉[1] 冯友宏[1][2] 王晓雨[1]
 1.南京邮电大学 教育部宽带无线通信与传感器技术重点实验室,;2.安徽师范大学 物理与电子信息学院
Author(s):
 GAO Hui[1] FENG You-hong[1][2] WANG Xiao-yu[1]
关键词:
 认知无线网络协作频谱感知能耗效率硬判决误码率限制
Keywords:
 cognitive wireless networkcooperative spectrum sensing energy efficiencyhard decision fusionbit-error-rate constraint
分类号:
TP301
文献标志码:
A
摘要:
 认知无线传感网可利用空闲的授权频段来解决传统无线传感器网络的频谱资源短缺的问题,在授权频段内,其利用频谱空穴进行通信,从而改善了无线传感器网的性能.由于认知无线传感网主要基于无线传感器网,因此存在着节点能力弱、需考虑网络节能及其与节点协作等问题,不能直接套用传统认知无线电网络的技术.由于次用户能耗限制和上传信道信息可能存在错误,提高能耗效率在次用户频谱感知和协作发送过程中显得非常重要.为此,提出了一种用于集中式协作频谱感知的硬判决融合算法.该算法在能耗阶段,由总的检测概率和虚警概率的限制求最小的次用户数目;在能耗效率优化阶段,在固定感知时隙等参数限制下,设计优化目标函数,迭代算法求得最优用户数,从而实现能耗的最大效率.基于信道信息误码率对能耗影响的分析,进行了硬判决融合算法与传统算法的对比仿真实验.仿真结果表明,该算法需要的感知节点最少,且能耗效率可达到最优.
Abstract:
 Cognitive Wireless Sensor Networks ( CWSN) can utilize idle authorized spectrum to overcome the shortage of spectrum re-sources in the traditional wireless sensor network. Within the authorized spectrum,the use of spectrum hole for communication can im-prove performance of wireless sensor network. In addition,since the CWSN operates in wireless sensor network there exist many short-comings,such as weak energy of each sensor node,consideration of energy-saving and collaboration of energy-saving with specific node etc,which limit the direct application of traditional technology of cognitive radio network. Due to the energy constraint of each cognitive user and potential secondary transmission errors in CWSN,energy efficiency becomes very important for each cognitive node in spectrum sensing and cooperative transmission. The novel energy efficient strategies are proposed for the centralized CSS using hard decision fusion rules. In stage of energy consumption the minimum number of users can be calculated with the limitation of overall detection probability and false alarm probability;in stage of energy efficiency optimization under the constraint of parameters involving fixed perception time slot etc. the objective function is optimized with iterative algorithm for the optimized number of users as well as the maximum efficiency of energy consumption. Based on analysis on the channel information error rate of energy consumption,the simulation experiments on hard decision fusion algorithm are conducted in contrast with traditional ones. The results show that the optimality of k with N-Rule is prior to both of OR and AND-Rules and the energy efficiency is optimal.

相似文献/References:

[1]陈波 王欢 唐伦.认知无线网络中基于多用户公平性的功率分配[J].计算机技术与发展,2011,(04):77.
 CHEN Bo,WANG Huan,TANG Lun.Power Allocation Based-on Multi-user Fairness in Cognitive Wireless Networks[J].,2011,(10):77.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(10):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(10):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(10):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(10):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(10):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(10):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(10):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(10):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(10):43.

更新日期/Last Update: 2017-11-24