[1]聂长森[],白勇[],柳贤德[]. 基于机器学习的COX抑制剂预测模型研究[J].计算机技术与发展,2017,27(10):74-77.
 NIE Chang-sen[],BAI Yong[],LIU Xian-de[]. Study on COX Inhibitor Prediction Model Based on Machine Learning[J].,2017,27(10):74-77.
点击复制

 基于机器学习的COX抑制剂预测模型研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年10期
页码:
74-77
栏目:
智能、算法、系统工程
出版日期:
2017-10-10

文章信息/Info

Title:
 Study on COX Inhibitor Prediction Model Based on Machine Learning
文章编号:
1673-629X(2017)10-0001-04
作者:
 聂长森[1]白勇[1]柳贤德[2]
 1.海南大学 信息科学技术学院;2.海南大学 农学院
Author(s):
 NIE Chang-sen[1]BAI Yong[1]LIU Xian-de[2]
关键词:
 COX抑制剂机器学习方法自组织特征神经网络 随机森林支持向量机
Keywords:
 COX inhibitorsmachine learningSOMrandom forestsupport vector machines
分类号:
TP301
文献标志码:
A
摘要:
 针对目前COX(环氧合酶)抑制剂较少且抑制效果差的问题,以及传统的化学实验筛选COX抑制剂分子的方法中成本高且效率低的问题,基于机器学习算法,提出并建立了一种COX抑制剂的预测模型.该模型可高效且准确地找到COX抑制剂,通过大量搜集文献中的数据建立数据集,使用Mold2软件计算化合物分子描述符,利用自组织特征映射神经网络(SOM)划分训练集和测试集,应用随机森林(RF)和支持向量机(SVM)等机器学习算法分别建立了COX抑制剂预测模型.实验对比发现,SOM结合RF算法较传统化学实验方法具有更好的预测精度,且预测效率也有大幅提升.实验研究表明,基于自组织神经网络和随机森立的机器学习方法建立的COX抑制剂预测模型,具有很好的分类预测效果,可以为COX抑制剂的分析与预测提供有力的研究工具.
Abstract:
 In allusion of the lack in COX ( Cyclooxygenase) inhibitor and its poor inhibition effect,moreover for the reason that the tradi-tional COX inhibitor screening must be performed through chemical experiment in high cost and low efficiency,a forecast model of COX inhibitors based on machine learning algorithm is proposed and established. It can find COX inhibitor efficiently and accurately. In the es-tablishing process the data set with huge collection of data in the literature has been built up and then the molecular descriptors with the software of Mold2 has been calculated and divided into training set and testing set with the method of SOM. However,two ML methods, Support Vector Machine (SVM) and Random Forest (RF),are employed to develop a prediction method for searching inhibitors and non-inhibitors of COX from the literature. The verification experiments show that the algorithm of SOM and RF has a better prediction accuracy,which also has a higher efficiency compared with the traditional chemical methods. The results of investigation demonstrate that the COX inhibitor prediction models based on SOM and RF has a good classification prediction effect and provides powerful instrument for analysis and prediction of COX inhibitor.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(10):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(10):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(10):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(10):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(10):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(10):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(10):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(10):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(10):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(10):47.

更新日期/Last Update: 2017-11-23