[1]陈少利,杨敏. 改进变步长快速迭代收缩阈值算法[J].计算机技术与发展,2017,27(10):69-73.
 CHEN Shao-li,YANG Min. An Improved Fast Iterative Shrinkage-thresholding Algorithm with Variable Stepsize[J].,2017,27(10):69-73.
点击复制

 改进变步长快速迭代收缩阈值算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年10期
页码:
69-73
栏目:
智能、算法、系统工程
出版日期:
2017-10-10

文章信息/Info

Title:
 An Improved Fast Iterative Shrinkage-thresholding Algorithm with Variable Stepsize
文章编号:
1673-629X(2017)10-0069-05
作者:
 陈少利杨敏
 南京邮电大学 自动化学院
Author(s):
 CHEN Shao-liYANG Min
关键词:
 快速迭代收缩阈值算法Barzilai-Borwein算子全变分模型压缩感知图像去噪
Keywords:
 fast iterative shrinkage-threshold algorithmBarzilai-Borwein operatortotal variation modelcompressed sensingimage de-nosing
分类号:
TP391
文献标志码:
A
摘要:
 图像复原问题是图像处理中的一项重要研究内容,解决图像复原问题,往往涉及到大量的数据集和未知信息.为了解决此类高维数据优化问题,前向后向算法提供了简洁、实用的方法.快速迭代收缩阈值算法是在前向后向算法的基础上加入了全局加速算子,一定程度上提高了算法的收敛速率.但是,快速迭代收缩阈值算法在解决最小值优化问题时,采用的是固定步长因子,限制了算法的收敛速率.针对该问题,结合Barzilai-Borwein算子提出一种改进的变步长算法.改进算法在每次迭代中利用前两步的迭代信息更新步长因子,加快了算法的收敛.将该算法应用于压缩感知和图像去噪中,数值实验结果表明:该算法改进了原算法的收敛速率.因此,改进变步长快速迭代收缩阈值算法不仅提高了算法的效率,同时提高了信号复原的信噪比.
Abstract:
 Image restoration is an important research in image processing and solving of it involves large databases and many unknowns. The forward-backward splitting method provides a simple,practicable solution to solve the kinds of data optimization with high dimen-sion. The fast iterative shrinkage-thresholding algorithm joins the global acceleration operator and improve its convergence rate based on the forward-backward algorithm. However,the fixed step-size limits its speed of the convergence in minimal optimization solving. To ad-dress that,an improved algorithm with variable stepsize by using Barzilai-Borwein ( BB) operator is proposed which updates the step size with the iterative information of the first two steps in each iteration to accelerate its convergence. Then it’ s applied to image denosing and compressed sensing. The experimental results demonstrate that it is more efficient than the original fast iterative shrinkage-threshold algo-rithm,not only in the efficiency but also in the signal to noise ratio of signal restoration.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(10):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(10):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(10):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(10):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(10):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(10):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(10):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(10):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(10):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(10):47.

更新日期/Last Update: 2017-11-23