[1]孟岩,汪云云. 典型半监督分类算法的研究分析[J].计算机技术与发展,2017,27(10):43-48.
 MENG Yan,WANG Yun-yun. Research and Analysis of Typical Semi-supervised Classification Algorithm[J].,2017,27(10):43-48.
点击复制

 典型半监督分类算法的研究分析()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年10期
页码:
43-48
栏目:
智能、算法、系统工程
出版日期:
2017-10-10

文章信息/Info

Title:
 Research and Analysis of Typical Semi-supervised Classification Algorithm
文章编号:
1673-629X(2017)10-0043-05
作者:
 孟岩汪云云
 南京邮电大学 计算机学院/软件学院
Author(s):
 MENG YanWANG Yun-yun
关键词:
 半监督分类数据分布聚类假设流行假设
Keywords:
 semi-supervised classificationdata distributioncluster assumptionmanifold assumption
分类号:
TP301.6
文献标志码:
A
摘要:
 近年来,大量半监督分类算法被提出.然而在真实的学习任务中,研究者很难决定究竟选择哪一种半监督分类算法,而在这方面并没有任何指导.半监督分类算法可通过数据分布假设进行分类.为此,在对比分析采用不同假设的半监督分类典型算法的基础上,以最小二乘方法(Least Squares,LS)为基准,研究比较了基于聚类假设的转导支持向量机(Transductive Support Vector Machine,TSVM)和基于流行假设的正则化最小二乘法(Laplacian Regularized Least Squares Classification,LapRLSC),并同时利用两种假设的SemiBoost以及无任何假设的蕴含限制最小二乘法(Implicitly Constrain-ed Least Squares,ICLS)的分类效果.得出的结论为,在已知数据样本分布的情况下,利用相应假设的方法可保证较高的分类正确率;在对数据分布没有任何先验知识且样本数量有限的情况下,TSVM能够达到较高的分类精度;在较难获得样本标记而又强调分类安全性时,宜选择ICLS,而LapRLSC也是较好的选项之一.
Abstract:
 Large amounts of semi-supervised classification algorithms have been proposed recently,however,it is really hard to decide which one to use in real learning tasks,and further there is no related guidance in literature. Therefore,empirical comparisons of several typical algorithms have been performed to provide some useful suggestions. In fact,semi-supervised classification algorithms can be cate-gorized by the data distribution assumption. Therefore,typical algorithms with different assumption adoptions have been contrasted. Spe-cifically,they are Transductive Support Vector Machine (TSVM) using the cluster assumption,Laplacian Regularized Least Squares Classification ( LapRLSC) using the manifold assumption, and SemiBoost using both assumptions, and Implicitly Constrained Least Squares ( ICLS) without any assumption,with the supervised least Squares Classification ( LS) as the base line. Eventually it is conclu-ded that when data distribution is given,the semi-supervised classification algorithm that adopts corresponding assumption can lead to the best performance;without any prior knowledge about data distribution,TSVM can be a good choice when the given labeled samples are extremely limited;when the labeled samples are not so scarce,and meanwhile if learning safety is emphasized,ICLS is proposed,and La-pRLSC is another good choice.

相似文献/References:

[1]张雁,吕丹桔,吴保国.基于Tri-Training半监督分类算法的研究[J].计算机技术与发展,2013,(07):77.
 ZHANG Yan[],L(U) Dan-ju[],WU Bao-guo[].Research of Semi-supervised Classification Algorithm Based on Tri-Training[J].,2013,(10):77.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(10):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(10):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(10):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(10):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(10):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(10):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(10):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(10):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(10):43.

更新日期/Last Update: 2017-11-23