[1]韦黔[][],陈迪[] [],林树靖[][],等. 基于迭代卡尔曼滤波的传感器数据融合仿真[J].计算机技术与发展,2017,27(09):137-140.
 WEI Qian[][],CHEN Di[][],LIN Shu-jing[] [],et al. Simulation of Multisensor Data Fusion Based on Iterative Kalman Filter[J].,2017,27(09):137-140.
点击复制

 基于迭代卡尔曼滤波的传感器数据融合仿真()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年09期
页码:
137-140
栏目:
应用开发研究
出版日期:
2017-09-10

文章信息/Info

Title:
 Simulation of Multisensor Data Fusion Based on Iterative Kalman Filter
文章编号:
1673-629X(2017)09-0137-04
作者:
 韦黔[1][2] 陈迪[1] [2]林树靖[1][2] 仇三铭[1] [2]张同兴[3]
 1.上海交通大学 电子信息与电气工程学院 仪器科学与工程系;2.上海智能诊疗仪器工程技术研究中心;3.上海直川电子科技有限公司
Author(s):
 WEI Qian[1][2]CHEN Di[1][2] LIN Shu-jing[1] [2]QIU San-ming[1][2] ZHANG Tong-xing[3]
关键词:
 卡尔曼滤波器传感器数据融合滤波精度迭代法仿真
Keywords:
 Kalman filtersensory data fusionfiltering precisioniterative algorithmsimulation
分类号:
TP301.6
文献标志码:
A
摘要:
 在对运动系统进行实时动态姿态信息检测过程中,常常需要加速度计、陀螺仪等多个惯性传感器的协同工作,因此需要对多传感器的输出数据进行融合处理.卡尔曼滤波法是其中常用的一种数据融合算法.该算法的滤波融合精度,直接影响了运动系统姿态信息的精度与实时性.在研究传统的卡尔曼滤波算法的基础上,仿真分析了过程噪声协方差矩阵、测量噪声协方差矩阵对于卡尔曼滤波算法的滤波精度、响应时间的影响,提出了一种基于数据迭代法的卡尔曼滤波融合算法.该算法将多传感器数据融合后的输出再次进行迭代运算,实现了较好的融合效果.仿真实验结果表明,相较于传统的卡尔曼滤波算法,所提出算法的复杂度低,实时性好,同时滤波精度大幅提升.
Abstract:
 It is needed the cooperation for inertial sensors like accelerometers and gyroscopes in real-time and dynamic attitude informa-tion detection for mobile system,so the output data of multisensors is required to fuse and process. The Kalman filter,as a data fusion al-gorithm,is usually adopted and its filtering accuracy would have a direct influence on the accuracy and real-time performance of the atti-tude information of mobile system. On the basis of research on the traditional Kalman filter, simulation and analysis of the impact of process and measurement noise covariance matrix on the accuracy and response time of Kalman filtering algorithm,a novel Kalman filter based on a data iterative algorithm is presented,which carries on the iterative operation again for the output after fusion of multisensors data,realizing the good effect. Simulation shows that it has a good real-time performance and low complexity and promotes filtering ac-curacy significantly compared with traditional Kalman filter.

相似文献/References:

[1]青波 杨晨辉 陈涛.基于分割的复杂运动跟踪的研究[J].计算机技术与发展,2009,(04):157.
 QING Bo,YANG Chen-hui,CHEN Tao.Research in Complex Motion Tracking on Segmentation[J].,2009,(09):157.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(09):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(09):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(09):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(09):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(09):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(09):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(09):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(09):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(09):43.

更新日期/Last Update: 2017-10-24