[1]林丹,罗杰. 基于有权网络的区域交通子网划分方法研究[J].计算机技术与发展,2017,27(09):120-123.
 LIN Dan,LUO Jie. esearch on Regional Transportation Sub-netting Method with Weighted Network[J].,2017,27(09):120-123.
点击复制

 基于有权网络的区域交通子网划分方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年09期
页码:
120-123
栏目:
应用开发研究
出版日期:
2017-09-10

文章信息/Info

Title:
 esearch on Regional Transportation Sub-netting Method with Weighted Network
文章编号:
1673-629X(2017)09-0120-04
作者:
 林丹罗杰
 南京邮电大学 自动化学院
Author(s):
 LIN DanLUO Jie
关键词:
 交通区域社区结构车流量路段距离
Keywords:
 traffic areacommunity structuretraffic flowdistance of highway
分类号:
TP301
文献标志码:
A
摘要:
 交通拥堵问题,已成为世界各国不容回避的棘手难题,引起了众多学者的关注.动态划分交通区域是提高区域交通系统整体效率的一个有效的解决方法,随着计算机技术的快速发展,复杂网络理论也有了突破性的进展.为此,在复杂网络社团划分的基础上,以交通路网的畅通特性为权重,提出了无权网络社团划分的改进算法.该算法采用路段间的车流量和路段距离作为权重的参考因素,同时结合网络中复杂度的大小,以模块度Q作为不同划分结果的评价标准,使得改进后的算法划分出来的社团可靠性更强.为验证提出算法的有效性和可行性,基于所编写的计算机程序,对该算法进行了仿真实验.基于仿真实验结果的改进前后的Q值分析对比,验证了该算法的有效性和可行性,且具有交通区域实时动态划分的潜力.
Abstract:
 Traffic jam has become an inevitable problem in the world and caused a lot of attentions from scholars. Dynamic partition of traffic area is an effective solution to improve the efficiency for entire area traffic system. With the rapid development of the computer technology,the theory of complex networks has made a breakthrough. Therefore,on the basis of community structure partition on complex network,by taken the flow characteristics of traffic network as weight,an improved algorithm for no-weighted network community divi-sion is proposed. It refers to traffic flow and distance of the highway as reference factors for weight and combined with complexity of net-work,has enhanced the reliability of community structures by taken Modularity Q as evaluation standard for different partition result. To verify its effectiveness and feasibility,the simulation experiments are carried out based on the computer program self-compiled,which in-dicate that it is effective and feasible according to the contrast analysis on Q value before and after modification and has the potential of re-al-time dynamic division of traffic area.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(09):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(09):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(09):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(09):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(09):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(09):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(09):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(09):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(09):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(09):47.

更新日期/Last Update: 2017-10-20