[1]沈德海,侯建,鄂旭,等. 基于米字型子窗口中值加权的滤波算法[J].计算机技术与发展,2017,27(09):78-81.
 SHEN De-hai,HOU Jian,E Xu ZHANG,et al. Median Weighted Filtering Algorithm Based on UK-flag Shaped Sub-windows[J].,2017,27(09):78-81.
点击复制

 基于米字型子窗口中值加权的滤波算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年09期
页码:
78-81
栏目:
智能、算法、系统工程
出版日期:
2017-09-10

文章信息/Info

Title:
 Median Weighted Filtering Algorithm Based on UK-flag Shaped Sub-windows
文章编号:
1673-629X(2017)09-0078-04
作者:
 沈德海侯建鄂旭张龙昌阎琦
 渤海大学 信息科学与技术学院
Author(s):
 SHEN De-haiHOU JianE Xu ZHANGLong-changYAN Qi
关键词:
 滤波混合噪声米字型加权
Keywords:
 filtermixed noiseUK-flag shapedweightd
分类号:
TN391.41
文献标志码:
A
摘要:
 传统的中值滤波和均值滤波算法分别对脉冲噪声和高斯噪声有良好的抑制作用,但当图像中同时含有这两类噪声时,它们的滤波效果均不理想.为了抑制图像中混有的脉冲噪声和高斯噪声,提出了一种基于米字型子窗口中值加权的滤波算法.该算法借鉴多级中值滤波的思想将3×3滤波窗口划分米字型四个子窗口,通过统计各子窗口内非脉冲噪声像素点来计算这些像素点的中值,采用归一化方法计算这些中值点的权值,并将各子窗口的中值及对应的权值进行加权运算,运算结果作为中心点的滤波输出.实验结果表明,所提出的算法对混有脉冲噪声和高斯噪声的图像去噪能力较强,且较好地保持了图像的边缘等细节,滤波效果优于传统中值滤波算法、传统均值滤波算法和多级中值滤波MLM算法,且具有一定的应用价值.
Abstract:
 Traditional median filer and mean filter algorithms can eliminate the impulse noise and Gauss noise in an image respectively, but when the image contains these two types of noise at the same time,their filtering effect are not ideal. In order to suppress the impulse noise and Gauss noise mixed in the image,a median weighted filtering algorithm based on UK-flag shaped sub-windows is proposed, which uses the ideas of the multistage median filtering to divide 3×3 filtering window into UK-flag shaped sub-windows and then non-impulse noise pixels and their medians is calculated. The normalized method is employed to calculate the weights of these median pixels so that each median pixel in sub-window and its corresponding weight is weighted. The results have been acquired via filtering output of center pixel in the filtering window. Experimental results indicate that it has good filtering performance for mixed noise images and keeps the image edge details fare well and that the filtering effects are superior to the traditional median filtering algorithm,mean filtering algo-rithm and MLM algorithm,which displays certain practical value.

相似文献/References:

[1]赵凯 王爱平 吴刚.非高斯噪声下Kalman滤波熵理论算法研究[J].计算机技术与发展,2008,(06):40.
 ZHAO Kai,WANG Ai-ping,WU Gang.Kalman Filter Algorithm under Non- Guassian Noises Using Entropy Theory[J].,2008,(09):40.
[2]罗钧 焦荣梅.一种块效应图像的处理方法[J].计算机技术与发展,2007,(10):37.
 LUO Jun,JIAO Rong-mei.A Method for Improving Blocking Effect Image[J].,2007,(09):37.
[3]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(09):1.
[4]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(09):5.
[5]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(09):13.
[6]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(09):21.
[7]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(09):25.
[8]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(09):29.
[9]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(09):34.
[10]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(09):38.

更新日期/Last Update: 2017-10-20