[1]戚后林,顾磊. 基于密度与最小距离的K-means算法初始中心方法[J].计算机技术与发展,2017,27(09):60-63.
 QI Hou-lin,GU Lei. An Initial Center Algorithm of K-means Based on Density and Minimum Distance[J].,2017,27(09):60-63.
点击复制

 基于密度与最小距离的K-means算法初始中心方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年09期
页码:
60-63
栏目:
智能、算法、系统工程
出版日期:
2017-09-10

文章信息/Info

Title:
 An Initial Center Algorithm of K-means Based on Density and Minimum Distance
文章编号:
1673-629X(2017)09-0060-04
作者:
 戚后林顾磊
 南京邮电大学 计算机学院
Author(s):
 QI Hou-linGU Lei
关键词:
 K-means算法类簇中心密度最小距离迭代次数
Keywords:
 K-means algorithmcluster centerdensityminimum distanceiteration number
分类号:
TP301.6
文献标志码:
A
摘要:
 为了克服在传统K-means聚类算法过程中因初始类簇中心的随机性指定所带来的聚类结果波动较大的缺陷,提出了一种基于密度与最小距离作为参数来确定初始类簇中心的算法.该算法根据一定的规则计算数据对象的密度参数,在计算完数据集中每条数据的单点密度之后,计算每个数据对象与较其密度大的其他数据对象的最小距离,以密度和最小距离作为参数,选取密度和最小距离同时较大的点作为K-means聚类过程的初始类簇中心.实验结果表明,在类簇数目确定的情况下,应用该算法确定的初始K-means类簇中心,在标准的UCI数据集上能够进行K-means聚类,且与随机选择类簇中心和其他使用密度作为参数的算法相比,基于改进后的初始中心方法的K-means聚类算法具有较高的准确率和更快的收敛速度.
Abstract:
 In order to overcome a large fluctuation caused by the traditional K-means algorithm clustering with assignment of the random initial cluster centers,an algorithm taken the density and minimum distance as the parameters to determine the initial cluster centers is pro-posed,which calculates the density parameter of the data object according to certain rules and minimum distance between each data object and other data objects after having calculated single point density of each data in the data set. The larger one among the densities and min-imum distances has been chosen as initial cluster center in the process of K-means clustering. Experimental results show that it has higher accuracy and faster convergence rate compared with ones using randomly selected cluster centers and using density as a parameter for K-means clustering on standard UCI data set.

相似文献/References:

[1]耿筱媛 张燕平 闫屹.改进的K—means算法在电信客户细分中的应用[J].计算机技术与发展,2008,(05):163.
 GENG Xiao-yuan,ZHANG Yan-ping,YAN Yi.Application of Improved K - means Algorithm Subdivision of Telecom Clients[J].,2008,(09):163.
[2]黄韬 刘胜辉 谭艳娜.基于k-means聚类算法的研究[J].计算机技术与发展,2011,(07):54.
 HUANG Tao,LIU Sheng-hui,TAN Yan-na.Research of Clustering Algorithm Based on K-means[J].,2011,(09):54.
[3]周婷,张君瑛,罗成.基于Hadoop的K-means聚类算法的实现[J].计算机技术与发展,2013,(07):18.
 ZHOU Ting[],ZHANG Jun-ying[],LUO Cheng[].Realization of K-means Clustering Algorithm Based on Hadoop[J].,2013,(09):18.
[4]何聚厚,范文静.基于改进K-Means算法的教学反思文本聚类研究[J].计算机技术与发展,2013,(11):99.
 HE Ju-hou[],FAN Wen-jing[].Research on Text Clustering of Teaching Reflection Based on Improved K-Means Algorithm[J].,2013,(09):99.
[5]谢秀华,李陶深.一种基于改进PSO的K-means优化聚类算法[J].计算机技术与发展,2014,24(02):34.
[6]杨永涛,李静.一种改进的K-means数字资源聚类算法[J].计算机技术与发展,2014,24(06):107.
 YANG Yong-tao[],LI Jing[].An Improved K-means Clustering Algorithm for Digital Resources[J].,2014,24(09):107.
[7]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(09):1.
[8]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(09):5.
[9]周爱武 于亚飞.K-Means聚类算法的研究[J].计算机技术与发展,2011,(02):62.
 ZHOU Ai-wu,YU Ya-fei.The Research about Clustering Algorithm of K-Means[J].,2011,(09):62.
[10]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(09):13.
[11]尹成祥 张宏军,张睿,綦秀利,等. 一种改进的K-Means算法[J].计算机技术与发展,2014,24(10):30.
 YIN Cheng-xiang,ZHANG Hong-jun,ZHANG Rui,et al. An Improved K-Means Clustering Algorithm[J].,2014,24(09):30.
[12]袁武,任勋益. 水平分割数据的保护隐私聚类挖掘方法研究[J].计算机技术与发展,2015,25(05):115.
 YUAN Wu,REN Xun-yi. Research on Privacy Preserving Clustering Method for Horizontal Partitioned Data[J].,2015,25(09):115.
[13]李振,贾瑞玉. 一种改进的K-means蚁群聚类算法[J].计算机技术与发展,2015,25(12):28.
 LI Zhen,JIA Rui-yu. An Improved K-means Ant Colony Clustering Algorithm[J].,2015,25(09):28.
[14]唐丹[],张正军[],王俐莉[]. 基于改进的近邻传播聚类算法的Gap统计研究[J].计算机技术与发展,2017,27(01):182.
 TANG Dan[],ZHANG Zheng-jun[],WANG Li-li[]. Study on Gap Statistic Based on Modified Affinity Propagation Clustering[J].,2017,27(09):182.
[15]谢志明[][],王鹏[],黄焱[]. 多维数据K-means谱聚类算法改进研究[J].计算机技术与发展,2017,27(10):60.
 XIE Zhi-ming[][],WANG Peng[],HUANG Yan[]. Research on Modification of K-means Spectral Clustering Algorithm of Multidimensional Data[J].,2017,27(09):60.

更新日期/Last Update: 2017-10-20