[1]张瑶,李蜀瑜,汤玥. 大数据下的多源异构知识融合算法研究[J].计算机技术与发展,2017,27(09):12-16.
 ZHANG Yao,LI Shu-yu,TANG Yue. Research on Heterogeneous Knowledge Fusion Algorithm under Big Data Environment [J].,2017,27(09):12-16.
点击复制

 大数据下的多源异构知识融合算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年09期
页码:
12-16
栏目:
智能、算法、系统工程
出版日期:
2017-09-10

文章信息/Info

Title:
 Research on Heterogeneous Knowledge Fusion Algorithm under Big Data Environment

文章编号:
1673-629X(2017)09-0012-05
作者:
张瑶李蜀瑜汤玥
 陕西师范大学 计算机科学学院
Author(s):
 ZHANG YaoLI Shu-yuTANG Yue
关键词:
 大数据多源异构知识知识融合融合算法
Keywords:
 big datamulti-source heterogeneousknowledge knowledgefusion fusion algorithm
分类号:
TP302
文献标志码:
A
摘要:
 在大数据环境下,多源异构知识的融合为研究者从众多分散、异构的数据源和知识源中挖掘出隐含的、有价值的和尚未被发现的信息和知识提供了非常有效的手段和方法.针对目前知识融合方法的不足,在对大数据环境下的异构知识融合方法进行深入研究的基础上,将已有的数据融合算法合理地移植到知识融合中,设计并构造了大数据环境下的多源异构知识融合算法.为进一步提高获取知识的质量,依据知识源粒度的动态选择,提出了一种改进的知识源分解-合并算法,以获得合适粒度大小的知识源集合和尽可能真实可靠的知识.基于Hadoop和MapReduce框架所构建的实验平台对所提算法进行了实验验证.实验结果表明,所提出的多源异构知识融合算法有效可行,并能够有效显著地提高多源异构知识融合算法的性能.
Abstract:
 In environment of big data,the integration of multi-source heterogeneous knowledge fusion has provided one of the most effec-tive means and methods for researchers to discover the implicit,valuable and undetected knowledge from a lot of knowledge sources that are dispersed and heterogeneous. Aimed at the shortcomings of the current knowledge fusion methods,based on investigations on them un-der the big data environment,the existing data fusion methods have been employed,which are transplanted to the knowledge fusion rea-sonably. A kind of algorithm for multi-source heterogeneous knowledge fusion is proposed. In order to further improve the quality of the acquiring knowledge,an improved algorithm based on the dynamic selection of knowledge source granularity is proposed to obtain the ap-propriate size of the collection of knowledge sources and the true and reliable knowledge as possible. Its experimental verification is con-ducted based on the experimental platform constructed by Hadoop and MapReduce framework. Experimental results show that it is effec-tive and feasible and effectively improves the performance of multi-source heterogeneous knowledge fusion algorithms.

相似文献/References:

[1]严霄凤,张德馨.大数据研究[J].计算机技术与发展,2013,(04):168.
 YAN Xiao-feng,ZHANG De-xin.Big Data Research[J].,2013,(09):168.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(09):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(09):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(09):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(09):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(09):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(09):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(09):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(09):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(09):43.
[11]王雷,陈彦先,袁哲,等. 面向预拌混凝土行业的云计算[J].计算机技术与发展,2014,24(08):14.
 WANG Lei,CHEN Yan-xian,YUAN Zhe JI Xu. Research on Cloud Computing for Ready-mixed Concrete Industry[J].,2014,24(09):14.
[12]金宗泽,冯亚丽,文必龙,等. 大数据分析流程框架的研究[J].计算机技术与发展,2014,24(08):117.
 JIN Zong-ze,FENG Ya-l,WEN Bi-long,et al. Research on Framework of Big Data Analytic Process[J].,2014,24(09):117.
[13]张也弛,周文钦,石润华. 一种面向云的大数据完整性检测协议[J].计算机技术与发展,2014,24(09):68.
 ZHANG Ye-chi,ZHOU Wen-qin,SHI Run-hua. A Big Data Integrity Checking Protocol for Cloud[J].,2014,24(09):68.
[14]谢怡,王航,刘新瀚,等. 大数据环境下数据读取关键技术研究[J].计算机技术与发展,2015,25(02):113.
 XIE Yi,WANG Hang,LIU Xin-han,et al. Research on Data Reading Techniques Based on Big Data Environment[J].,2015,25(09):113.
[15]付燕平,罗明宇,刘其军. 大数据三维模型快速显示技术研究[J].计算机技术与发展,2015,25(05):87.
 FU Yan-ping,LUO Ming-yu,LIU Qi-jun. Research on Fast Display Technology for Big Data Three-dimensional Model[J].,2015,25(09):87.
[16]赵震,任永昌. 大数据时代基于云计算的电子政务平台研究[J].计算机技术与发展,2015,25(10):145.
 ZHAO Zhen,REN Yong-chang. Research on E-government Platform Based on Cloud Computing in Big Data Era[J].,2015,25(09):145.
[17]胡存刚,程莹. 基于粒子群算法的大数据智能搜索引擎的研究[J].计算机技术与发展,2015,25(12):14.
 HU Cun-gang,CHENG Ying. Research on Big Data Intelligent Search Engine Based on PSO[J].,2015,25(09):14.
[18]肖洁,袁嵩,谭天. 大数据时代数据隐私安全研究[J].计算机技术与发展,2016,26(05):91.
 XIAO Jie,YUAN Song,TAN Tian. Research on Data Privacy in Big Data Age[J].,2016,26(09):91.
[19]郭先超,林宗缪,姚文勇. 互联网+质量检测平台设计[J].计算机技术与发展,2016,26(05):120.
 GUO Xian-chao,LIN Zong-miao,YAO Wen-yong. Design of Platform for Internet+ Quality Inspection[J].,2016,26(09):120.
[20]程艳云,张守超,杨杨. 基于大数据的时间序列异常点检测研究[J].计算机技术与发展,2016,26(05):139.
 CHENG Yan-yun,ZHANG Shou-chao,YANG Yang. Research on Time Series Outlier Detection Based on Big Data[J].,2016,26(09):139.

更新日期/Last Update: 2017-10-19