[1]秦军[],孙蒙[],冯亮亮[]. 一种面向绿色云计算的任务调度算法[J].计算机技术与发展,2017,27(08):92-96.
 QIN Jun[],SUN Meng[],FENG Liang-liang[]. A Task Scheduling Algorithm for Green Cloud Computing[J].,2017,27(08):92-96.
点击复制

 一种面向绿色云计算的任务调度算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年08期
页码:
92-96
栏目:
智能、算法、系统工程
出版日期:
2017-08-10

文章信息/Info

Title:
 A Task Scheduling Algorithm for Green Cloud Computing
文章编号:
1673-629X(2017)08-0092-05
作者:
 秦军[1]孙蒙[2]冯亮亮[2]
1.南京邮电大学 教育科学与技术学院;2.南京邮电大学 计算机学院
Author(s):
 QIN Jun[1]SUN Meng[2] FENG Liang-liang[2]
关键词:
 绿色云计算节能任务调度GCA
Keywords:
 green cloud computingenergy savingtask schedulingGCA
分类号:
TP301.6
文献标志码:
A
摘要:
 
任务调度时的服务器能耗是云计算系统动态能耗的重要组成部分.目前云计算带来的巨大能耗已经成为制约云计算发展的技术瓶颈,因此节约能源和提高能源利用率是实现绿色云计算系统的重要基础.为实现减少能耗和缩短任务执行时间的绿色云计算目标,将遗传算法和蚁群算法相结合,提出了一种动态融合的任务调度算法.该算法利用遗传算法全局搜索查找能力强的优点寻找任务调度的较优解,并将该较优解转化为蚁群的初始信息素值,再通过蚁群算法的蚁群信息交流和正反馈机制寻找任务调度问题的最优解,以有效降低云计算数据中心和计算中心的能耗.仿真实验结果表明,所提出的任务调度算法显著降低了云计算系统计算的运行时间和总能耗.
Abstract:
 The energy generated by the server during the scheduling system is an important part of the dynamic energy consumption of the cloud computing system and the huge energy consumption of the cloud computing has become the technical bottleneck which restricts the development of cloud computing.Therefore,saving energy and improving energy efficiency is an important foundation to achieve green cloud computing system.To achieve the goal of reducing energy consumption and shortening the task execution time of the green cloud computing,an energy-efficient scheduling algorithm based on genetic algorithm and ant colony algorithm has been proposed,which takes advantage of the strong global search ability of genetic algorithm to find the optimal solution of the scheduling problem,then converts it to the initial pheromone of ant colony optimization algorithm.After information communication and positive feedback,the global optimal solution of the task scheduling problem has been found out to effectively reduce the energy consumption in cloud computing center and calculating center.Simulation results show that the proposed algorithm has significantly reduced the task execution time and the total energy consumption.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(08):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(08):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(08):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(08):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(08):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(08):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(08):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(08):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(08):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(08):47.

更新日期/Last Update: 2017-09-21