[1]黄继鹏,陈志,芮路,等. 基于模糊聚类决策树的分布式语者识别算法[J].计算机技术与发展,2017,27(08):79-82.
 HUANG Ji-peng,CHEN Zhi,RUI Lu,et al. Distributed Speaker Identification Algorithm with Fuzzy Clustering Decision Tree[J].,2017,27(08):79-82.
点击复制

 基于模糊聚类决策树的分布式语者识别算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年08期
页码:
79-82
栏目:
智能、算法、系统工程
出版日期:
2017-08-10

文章信息/Info

Title:
 Distributed Speaker Identification Algorithm with Fuzzy Clustering Decision Tree
文章编号:
1673-629X(2017)08-0079-04
作者:
 黄继鹏陈志芮路王宇虹
 南京邮电大学 计算机学院
Author(s):
 HUANG Ji-pengCHEN ZhiRUI LuWANG Yu-hong
关键词:
 语者识别模糊聚类决策树分布式计算
Keywords:
 speaker identificationfuzzy clusteringdecision treedistributed computing
分类号:
TP391
文献标志码:
A
摘要:
为解决大规模语者识别问题中普遍存在的加性噪声、高计算复杂度等问题,提高大规模语者识别算法的抗噪性和鲁棒性,利用模糊聚类决策树,提出了一种分布式语者识别算法.该算法将训练数据等分成几个部分,对这几个部分分别使用基于模糊聚类的决策树算法进行训练;对于输入的测试样本,用建好的决策树进行分类,判断它属于哪棵树的哪个叶节点;在该选定的叶节点上使用梅尔频率倒谱系数和高斯混合模型识别方法识别该语者身份.对训练数据进行模糊聚类的过程主要包括四个步骤:根据相应的层提取语音特征;计算特征数据的均值和标准差得到信任间距集合;对集合使用Lloyd算法得到分隔向量;以分隔向量为基础进行聚类分组得到下一层的节点.实验结果表明,与传统的硬聚类算法相比,该算法能够提高语者识别的准确率和分类效率,对加性噪声具有良好的抗干扰能力.
Abstract:
 In order to solve the problems of additive noise and high computational complexity in speaker identification and to improve the robustness and anti-noise ability of the large scale speaker identification algorithm,a distributed speaker identification algorithm with fuzzy clustering decision tree has been presented,which divides training data into several parts,and builds fuzzy clustering decision trees for these parts.For testing data,fuzzy decision trees has been employed,which are built in the previous step to decide which leaf node the people’s speech belongs to.The speaker is identified by using the Mel-Frequency Cepstral Coefficients and the Gauss mixture model identification method on the selected leaf nodes.The process of fuzzy clustering on training data mainly includes four parts,i.e.extracting feature data from the corresponding layer,calculating the mean and standard deviation of the feature data,using Lloyd algorithm to get the separation vector,clustering to get the nodes of the next layer.The experimental result shows that compared with the traditional hard clustering algorithm,the proposed algorithm has improved the accuracy and classification efficiency of speaker identification,with the good anti-interference ability to the additive noise.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(08):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(08):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(08):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(08):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(08):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(08):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(08):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(08):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(08):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(08):47.

更新日期/Last Update: 2017-09-21