[1]赵阳,吴廖丹. 一种自底向上的最大频繁项集挖掘方法[J].计算机技术与发展,2017,27(08):57-60.
 ZHAO Yang,WU Liao-dan. A Bottom-up Method for Mining Maximum Frequent Itemsets[J].,2017,27(08):57-60.
点击复制

 一种自底向上的最大频繁项集挖掘方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年08期
页码:
57-60
栏目:
智能、算法、系统工程
出版日期:
2017-08-10

文章信息/Info

Title:
 A Bottom-up Method for Mining Maximum Frequent Itemsets
文章编号:
1673-629X(2017)08-0057-04
作者:
 赵阳吴廖丹
 江南计算技术研究所
Author(s):
 ZHAO YangWU Liao-dan
关键词:
 最大频繁项集关联规则挖掘FP-tree 最小非频繁项集边界频繁项集
Keywords:
 maximum frequent itemsetsassociation rules miningFP-tree minimum non-frequent itemsetsboundary frequent itemsets
分类号:
TP311
文献标志码:
A
摘要:
 频繁项集挖掘是关联规则挖掘中最关键的步骤.最大频繁项集是一种常用的频繁项集简化表示方法.自顶向下的最大频繁项集挖掘方法在最大频繁项集维度远小于频繁项数时往往会产生过多的候选频繁项集.已有的自底向上的最大频繁项集挖掘方法或者需多次遍历数据库,或者需递归生成条件频繁模式树,而预测剪枝策略有进一步提升的空间.为此,提出了基于最小非频繁项集的最大频繁项集挖掘算法(BNFIA),采用基于DFP-tree的存储结构,通过自底向上的方式挖掘出最小非频繁项集,利用最小非频繁项集的性质进行预测剪枝,以缩小搜索空间,再通过边界频繁项集快速挖掘出最大频繁项集.验证实验结果表明,提出算法的性能较同类算法有较为明显的提升.
Abstract:
 Mining frequent itemsets is the most critical step in mining association rules.Maximum frequent itemsets is a common compressed representation of frequent itemsets.In mining maximum frequent itemsets,the top-down methods would produce lots of candidate itemsets when the dimensions of maximum frequent itemsets is smaller than the number of frequent itemsets.The existing bottom-up methods need either traversal in database many times or building FP-tree recursively,and the prediction pruning strategies have further room for improvement.The algorithm of discovering maximum frequent itemsets based on minimum non-frequent itemsets named BNFIA has been proposed,which uses storage structure based on FP-tree and digs out the minimum non-frequent itemsets through a bottom-up approach first,then prunes with the minimum non-frequent itemsets to narrow search space for acquiring the maximum frequent itemsets fast through boundary frequent itemsets.Experimental results show that the proposed algorithm has performed better than the algorithm with same type.

相似文献/References:

[1]周丽 王小玲.基于网络审计日志关联规则挖掘的改进[J].计算机技术与发展,2011,(06):150.
 ZHOU Li,WANG Xiao-ling.Improved Algorithm for Association Rules Mining Based on Network Audit Record[J].,2011,(08):150.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(08):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(08):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(08):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(08):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(08):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(08):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(08):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(08):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(08):43.
[11]赵阳,白凡. 基于FP-tree的支持度计数优化策略[J].计算机技术与发展,2017,27(10):30.
 ZHAO Yang,BAI Fan. Support Count Optimization Method Based on FP-tree[J].,2017,27(08):30.

更新日期/Last Update: 2017-09-21