[1]谢尚高,王丽平. 基于同类测试样本组的稀疏表示人脸识别[J].计算机技术与发展,2017,27(08):7-11.
 XIE Shang-gao,WANG Li-ping. Sparse Representation Classification for Face Recognition with Intra-class Testing-sample Group[J].,2017,27(08):7-11.
点击复制

 基于同类测试样本组的稀疏表示人脸识别()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年08期
页码:
7-11
栏目:
智能、算法、系统工程
出版日期:
2017-08-10

文章信息/Info

Title:
 Sparse Representation Classification for Face Recognition with Intra-class Testing-sample Group
文章编号:
1673-629X(2017)08-0007-05
作者:
 谢尚高王丽平
 南京航空航天大学 理学院
Author(s):
 XIE Shang-gaoWANG Li-ping
关键词:
 类内测试样本组稀疏表示人脸识别矩阵L1-范数多样本
Keywords:
 intra-class testing-samplessparse representationface recognitionmatrix L1-normmultiple samples
分类号:
TP301
文献标志码:
A
摘要:
 近年来的研究表明,稀疏表示分类(SRC)方法是一种有效的人脸识别方法.SRC是单个样本基于向量l1-范数正则化的最小二乘分类.但现实中常常存在着已知多个测试样本属于同一类的情况,无疑有利于分类,而基于SRC或其他单样本模型的方法却未能利用该信息.为利用类别标签信息,提出了一种新的鲁棒人脸识别方法.该方法基于同类测试样本组的稀疏表示分类(IGSRC),即将同类多个测试样本放至同组,采用矩阵L1-范数正则化的最小二乘分类进行稀疏表示,将测试样本组判为类别中残差最小的标号.实验结果表明,相比于SRC与IGSRC方法,所提出的方法不但能取得更高的人脸识别率(即使在每类别训练样本数较少、训练样本存在部分遮挡),而且具有更少的计算耗时.
Abstract:
 Recent studies have shown that Sparse Representation Classification (SRC) is an effective method for face recognition.SRC is a least squares classification based on l1-norm regularized for a single testing-sample.However,in the case that multiple testing-samples are known to be the same class which is surely helpful in the classification,the common-class label information is not included in SRC or other single-sample models.Therefore,a novel robust face recognition method based on sparse representation classification is proposed which is on the basis of IGSRC.Taking multiple intra-class testing-samples into the same group,it adopts the matrix L1-norm regularized least squares classification for sparse representation and judges the test sample group as the label with minimum error in classes.Experimental results show that compared with IRC and IGSRC,the method proposed cannot only obtain better face recognition rate (even when the number of training samples per subject is small or training samples are partly occluded),also own less running time.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(08):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(08):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(08):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(08):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(08):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(08):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(08):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(08):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(08):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(08):47.

更新日期/Last Update: 2017-09-20