[1]尤永健,缪芸,倪伊楠,等. 基于模糊支持向量机的单向变速决策模型研究[J].计算机技术与发展,2017,27(07):190-193.
 YOU Yong-jian,MIAO Yun,NI Yi-nan,et al. Investigation on Single-track Variable Speed Decision Model Based on Fuzzy Support Vector Machine[J].,2017,27(07):190-193.
点击复制

 基于模糊支持向量机的单向变速决策模型研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年07期
页码:
190-193
栏目:
应用开发研究
出版日期:
2017-07-10

文章信息/Info

Title:
 Investigation on Single-track Variable Speed Decision Model Based on Fuzzy Support Vector Machine
文章编号:
1673-629X(2017)07-0190-04
作者:
 尤永健缪芸倪伊楠李雷
 南京邮电大学 非结构化数据计算与应用研究中心
Author(s):
 YOU Yong-jianMIAO YunNI Yi-nanLI Lei
关键词:
 单向变速决策模型模糊理论软间隔支持向量机隶属函数
Keywords:
 single-track variable speed decision modelfuzzy theorysoft interval support vectormachine membership functions
分类号:
O231
文献标志码:
A
摘要:
 汽车的智能驾驶决策问题是近年来机器学习领域的研究热点之一.驾驶员在驾驶过程中,通常会受到多种环境因素的影响,倘若驾驶员无法快速处理这些信息并做出正确的判断,无疑会引起安全事故.为此,在合理简化的前提下,基于驾驶决策行为以及影响驾驶决策相关环境因素的研究分析,将模糊理论和软间隔支持向量机理论相结合,提出了基于模糊支持向量机的单向变速决策模型.该模型旨在针对实时周边环境,为车辆驾驶员提供变速决策建议,帮助驾驶员更加高效地制定出安全的驾驶策略.仿真实验结果表明,相较于传统的支持向量机模型,建立于隶属函数之上的模糊支持向量机模型具有较高的决策正确率和较好的可拓展性,可为车辆驾驶员提供合理、安全的决策建议.
Abstract:
 Automatic driving decision-making problem is one of the hot spots in the field of machine learning in recent years.The drivers,in the driving process,are usually affected by many environmental factors.And if a driver cannot quickly deal with the information and make the right decisions,he would undoubtedly suffer huge security risks.In order to solve this problem,on the analysis of the driving decision-making behavior and related environmental factors affecting driving decision-making,a single-track variable speed decision model based on fuzzy support vector machine has been proposed in combination with fuzzy theory and soft interval support vector machine theory,which aims to provide drivers with decision-making suggestions for the current situation and to efficiently help drivers to develop a safe driving strategy.The simulation results show that compared with the traditional support vector machine,the proposed model has higher decision accuracy and relatively good expansibility suitable to provide drivers reasonable and safe recommendations

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(07):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(07):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(07):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(07):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(07):47.

更新日期/Last Update: 2017-08-24