[1]王建卫. 强脉冲噪声图像恢复及评价方法的研究[J].计算机技术与发展,2017,27(07):185-189.
 WANG Jian-wei. Investigation on Restoration and Assessment Method of Digital Image with Strong Impulse Noise[J].,2017,27(07):185-189.
点击复制

 强脉冲噪声图像恢复及评价方法的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年07期
页码:
185-189
栏目:
应用开发研究
出版日期:
2017-07-10

文章信息/Info

Title:
 Investigation on Restoration and Assessment Method of Digital Image with Strong Impulse Noise
文章编号:
1673-629X(2017)07-0185-05
作者:
 王建卫
 东北林业大学 机电工程学院
Author(s):
 WANG Jian-wei
关键词:
 图像恢复图像质量强脉冲噪声客观评价
Keywords:
 image restorationimage qualitystrong pulse noiseobjective assessment
分类号:
TP391.41
文献标志码:
A
摘要:
 为了解决含有强脉冲噪声的数字图像在恢复及其客观质量评价中存在的问题,利用空域滤波器对图像具有的消除噪声作用,在研究强脉冲噪声数据的表示及其恢复方法的基础上,提出了一种基于点处理理论的强脉冲噪声灰度图像恢复算法.该算法由给出的恢复前后的误差公式定义表示恢复的客观质量评价方法的去噪度参数,将基于RGB模型的彩色图像可分解为R、G、B三个颜色分量,给出了将灰度图像恢复算法直接应用于各个分量的改进方法.验证实验结果表明,所提出的算法不仅能够恢复含有强脉冲噪声的灰度图像,也适用于基于RGB模型的彩色图像,且其无需大量的排序操作,具有算法执行速度快、恢复效果稳定等优点,所定义的去噪度参数能较准确地给出恢复质量的客观评价.
Abstract:
 In order to solve the problems existed in restoration and objective quality assessment method of digital image with strong pulse noise,employing the theory of a certain extent of noise elimination for the spatial filters,a gray image restoration algorithm of strong impulse noise based on pixel processing theory is presented on the basis of investigations on the strong pulse noise data representation and restoration method.It represents the denoising degree parameter of the restoration quality assessment method has been defined by the given formula of the error signals and decomposes the color image into the three color components of R,G,B respectively with RGB model,and the modified method has been proposed which makes gray image restoration algorithm used in components directly.The experimental results show that the proposed algorithm can not only restore gray image with strong impulse noise,but also apply to color image based on RGB model without a large quality of the sort operations,which has advantages of fast execution and stable restoration effect,and that the definition of denoising parameter can accurately supply the objective assessment of restoration quality.

相似文献/References:

[1]聂笃宪.基于PSO自适应正则化参数图像恢复的研究[J].计算机技术与发展,2009,(01):106.
 NIE Du-xian.Research on Adaptively Regularized Parameter Image Restoration PSO- Based[J].,2009,(07):106.
[2]王建卫.强噪声彩色图像空域恢复方法[J].计算机技术与发展,2014,24(05):61.
 WANG Jian-wei.A Restoration Method of Color Image with Strong Noise[J].,2014,24(07):61.
[3]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[4]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[5]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[6]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[7]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[8]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(07):29.
[9]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(07):34.
[10]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(07):38.

更新日期/Last Update: 2017-08-24