[1]张毅,杜秀春,孙勤. 基于互联网的物理对象感知方法研究[J].计算机技术与发展,2017,27(07):96-100.
 ZHANG Yi,DU Xiu-chun,SUN Qin. Research on Physical Objects Discovery Method Based on Internet[J].,2017,27(07):96-100.
点击复制

 基于互联网的物理对象感知方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年07期
页码:
96-100
栏目:
安全与防范
出版日期:
2017-07-10

文章信息/Info

Title:
 Research on Physical Objects Discovery Method Based on Internet
文章编号:
1673-629X(2017)07-0096-05
作者:
 张毅杜秀春孙勤
 国防科学技术大学 计算机学院
Author(s):
 ZHANG Yi DU Xiu-chunSUN Qin
关键词:
 物理对象感知布隆过滤器支持向量机DNP3协议
Keywords:
 physical objectsensingBloom FilterSVMDNP3 Protocol
分类号:
TP301
文献标志码:
A
摘要:
 随着互联网技术的飞速发展,物联网技术也在不断发展进步,物理对象之间的网络互联性与交互性更加紧密也使得物理对象面临着越来越严峻的安全威胁,物理对象的感知工作和安全威胁问题是学术界和工业界急需解决的.物理对象感知方法研究为网络安全防护提供了工具和手段,在对比分析现有典型物理对象感知系统的基础上,针对目前物理对象感知系统中存在的问题,提出了基于BGP最近邻优先的感知方法,同时对网络中的通信协议和感知策略进行研究,提出基于设备网络特征分类的有效物理对象识别方法.对比实验表明,这些方法在IP地址生成、目标设备判别以及针对特定网络协议的感知上,在快速性和准确性上有了一定提高.这些物理对象感知方法弥补了现有工具的不足,在一定程度上为今后全球网络分析提供了研究可能.
Abstract:
 With the rapid development of Internet technology,IoT technology also develops quickly.Due to the more connectivity and interactivity of network between physical objects which are faced increasing security threats.The physical object discovering works and security threats urgently need to be solved in academia and industry,and physical object discovery methods provide research condition for network security.Through the comparison and analysis of the existing typical physical object discovering system,a discovering method based on BGP Nearest Neighbor First has been proposed,which is intended to solve the problems in present system.At the same time,by studying the communication protocol and sensing strategy in the network,another effective physical object recognition method based on device network feature classification has been put forward.Compared with traditional method,these methods have achieved high accuracy and efficiency in IP generation,target device discrimination and specific network protocol recognition,which have made up for the deficiencies of existing tools.To a certain extent it provides the possibility of research for future global network analysis.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(07):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(07):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(07):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(07):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(07):47.

更新日期/Last Update: 2017-08-22