[1]董胡. 基于先验信噪比和能零熵的语音端点检测算法[J].计算机技术与发展,2017,27(07):72-75.
 DONG Hu. Endpoint Detection Algorithm with Priori SNR and Energy-zero-spectral Entropy[J].,2017,27(07):72-75.
点击复制

 基于先验信噪比和能零熵的语音端点检测算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年07期
页码:
72-75
栏目:
智能、算法、系统工程
出版日期:
2017-07-10

文章信息/Info

Title:
 Endpoint Detection Algorithm with Priori SNR and Energy-zero-spectral Entropy
文章编号:
1673-629X(2017)07-0072-04
作者:
 董胡
 长沙师范学院 电子与信息工程系
Author(s):
 DONG Hu
关键词:
 先验信噪比鲁棒性端点检测谱熵能零积
Keywords:
 priori SNRrobustnessendpoint detectionspectral entropyenergy-zero-product
分类号:
TN912.35
文献标志码:
A
摘要:
 端点检测技术是语音识别系统中的一项关键技术,其性能在某种程度上对整个语音识别系统有着较大的影响,传统的语音端点检测算法在低信噪比环境下存在端点检测正确率低、抗噪性能差等问题.针对传统端点检测算法在低信噪比环境下存在的上述问题,提出了一种基于先验信噪比估计和能零熵的语音端点检测算法.该算法通过改进的先验信噪比估计算法对含噪语音进行增强处理,并对增强后的语音信号设置自适应端点检测阈值,利用能零熵算法对增强后的语音信号进行端点检测,实现了低信噪比环境下的语音端点检测.仿真实验结果表明,与传统的能零积和谱熵端点检测算法相比,所提出的端点检测算法在不同的低信噪比环境下具有较好的鲁棒性与较高的端点检测正确率.
Abstract:
 Speech endpoint detection is the key technology in voice recognition system,and its performance has a great influence for speech recognition system in some extent.However,traditional speech endpoint detection algorithms have problems of low accuracy and poor anti-noise under low SNR environment.In order to solve the problems above,a kind of speech endpoint detection algorithm based on prior SNR estimation and energy-zero-entropy has been proposed,in which the improved prior SNR estimation algorithm is employed to make speech enhancement processing of speech with noise and then the adaptive endpoint detection threshold is set for the enhanced speech signal.The energy-zero-spectral entropy algorithm is eventually adopted to make endpoint detection for enhanced speech signal and the speech endpoint detection under low noise environment is achieved.Simulation experiment results show that compared with traditional energy-zero-product and spectrum entropy endpoint detection algorithm,the proposed endpoint detection algorithm has better robustness and higher endpoint detection accuracy in different low SNR environment.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(07):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(07):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(07):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(07):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(07):47.

更新日期/Last Update: 2017-08-22