[1]贾敬典,刘艳,李雷. 模糊图像边缘检测算法研究[J].计算机技术与发展,2017,27(07):62-64.
 JIA Jing-dian,LIU Yan,LI Lei. Investigation on Detection Algorithm for Fuzzy Image Edge[J].,2017,27(07):62-64.
点击复制

 模糊图像边缘检测算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年07期
页码:
62-64
栏目:
智能、算法、系统工程
出版日期:
2017-07-10

文章信息/Info

Title:
 Investigation on Detection Algorithm for Fuzzy Image Edge
文章编号:
1673-629X(2017)07-0062-03
作者:
 贾敬典刘艳李雷
南京工业大学浦江学院
Author(s):
 JIA Jing-dianLIU YanLI Lei
关键词:
 边缘检测算法边缘梯度模糊边缘检测检测算子
Keywords:
 edge detection algorithmedge gradientfuzzy edge detectiondetection operator
分类号:
TP301.6
文献标志码:
A
摘要:
 图像边缘对应着图像中灰度突变或不连续的位置,传统的微分边缘检测都是基于某种形式的图像梯度算法.将计算所得的边缘梯度值与特定阈值进行比较,若边缘梯度值超过了阈值,则该边缘就被设定为当前边缘.对于灰度变化明显的图像边缘,传统算法均能满足要求.但对于一些灰度变化不明显的图像模糊边缘,检测效果则不甚理想,甚至会无法检测出来.为此,提出了一种模糊边缘检测算法.该算法通过增强图像边缘的对比度,以提高图像边缘检测的效果,使之能够检测出更多的边缘特征.为验证所提出算法的效果,相对传统Sobel算法与Log算法进行了对比仿真实验.仿真实验结果表明,相对于传统的边缘检测算子,所提出的模糊边缘检测算法更具有优越性与有效性.
Abstract:
 Since the image edge corresponds to the gray mutation and/or discontinuous position of image,the traditional differential edge detection is the image gradient algorithm based on certain forms.In comparison with a predetermined threshold,if the calculated edge gradient value exceeds the threshold value,the edge is taken as the current edge.The traditional algorithm can meet the requirement for the image edges with distinct variation of gray level.But for certain indistinct gray level variation,the detection effect is not satisfactory,even especially not be detected.Therefore,a fuzzy edge detection algorithm has been proposed where more edge features can be detected via enhancement of image edge contrast to improve the detection effect.In order to verify and validate the proposed algorithm,experimental contrast simulations have been conducted with traditional Sobel algorithm versus Log algorithm.The results show that compared with the traditional edge detection operators,the proposed fuzzy edge detection algorithm is more superior and effective.

相似文献/References:

[1]付麦霞 邢超 廉飞宇 王澎.基于FPGA的图像边缘检测器的研究和设计[J].计算机技术与发展,2009,(04):196.
 FU Mai-xia,XING Chao,LIAN Fei-yu,et al.Research and Design of Edge Detection Based on FPGA[J].,2009,(07):196.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(07):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(07):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(07):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(07):43.

更新日期/Last Update: 2017-08-22