[1]欧国振,孙林慧,薛海双. 基于重组超矢量的GMM-SVM说话人辨认系统[J].计算机技术与发展,2017,27(07):51-56.
 OU Guo-zhen,SUN Lin-hui,XUE Hai-shuang. GMM-SVM Speaker Identification System with Recombination of GMM Super Vector[J].,2017,27(07):51-56.
点击复制

 基于重组超矢量的GMM-SVM说话人辨认系统()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年07期
页码:
51-56
栏目:
智能、算法、系统工程
出版日期:
2017-07-10

文章信息/Info

Title:
 GMM-SVM Speaker Identification System with Recombination of GMM Super Vector
文章编号:
1673-629X(2017)07-0051-06
作者:
 欧国振孙林慧薛海双
 南京邮电大学 通信与信息工程学院
Author(s):
 OU Guo-zhenSUN Lin-huiXUE Hai-shuang
关键词:
 说话人辨认高斯混合模型-支持向量机超矢量重组辨别率建模时间
Keywords:
 speaker identificationGMM-SVMsuper vector recombinationidentification ratetime of modeling
分类号:
TP302
文献标志码:
A
摘要:
 在传统的高斯混合模型-支持向量机(Gaussian Mixture Model-Support Vector Machine,GMM-SVM)说话人辨认系统中,SVM利用从GMM矢量空间中得到的超矢量(Super Vector)直接对说话人进行建模与识别,由于没有考虑到超矢量内各均值矢量之间的关联性,识别性能有限.为此,提出了基于重组超矢量构建文本无关的GMM-SVM说话人辨认系统.该系统充分利用各相邻高斯分量的均值矢量的高度关联性,保证了重组后的超矢量能充分反映说话人身份的内在细节,使得系统具有充分利用SVM处理高维小数据性能的优越特点.验证实验结果表明,与传统的GMM-SVM系统相比,重组超矢量GMM-SVM说话人辨认系统显著地缩短了系统建模的时间,同时有效地提高了说话人的辨别率.
Abstract:
 In the traditional speaker identification system with Gaussian Mixture Model-Support Vector Machine (GMM-SVM),SVM uses super vector derived from the vector space of GMM to model and identify the target speakers directly.Since the relationship between two of mean vectors among GMM super vectors has not been considered,the performance of GMM-SVM system is limited.Thus a new text-independent GMM-SVM speaker identification system with super vector has been proposed which has made full use of tremendous correlation of each mean vector of the adjacent Gaussian components.The recombination super vectors have presented more inner detail of speakers’ identity and enable the new system to take the advantage of the characteristics of superior performance when SVM deals with the small and high dimensional data.The experimental results demonstrate that the GMM-SVM speaker identification system with recombination super vector has not only achieved a higher recognition rate than the traditional GMM-SVM system,but also significantly decreased identification time of speakers.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(07):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(07):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(07):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(07):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(07):47.
[11]单燕燕. 基于 LPC 和 MFCC 得分融合的说话人辨认[J].计算机技术与发展,2016,26(01):39.
 SHAN Yan-yan. Speaker Identification Based on Score Combination of LPC and MFCC[J].,2016,26(07):39.

更新日期/Last Update: 2017-08-22