[1]张志武[],荆晓远[][],吴飞[]. 基于非负稀疏图的协同训练软件缺陷预测[J].计算机技术与发展,2017,27(07):38-42.
 ZHANG Zhi-wu[],JING Xiao-yuan[] [],WU Fei[]. Defect Prediction of Co-training Software with Non-negative Sparse Graph[J].,2017,27(07):38-42.
点击复制

 基于非负稀疏图的协同训练软件缺陷预测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年07期
页码:
38-42
栏目:
智能、算法、系统工程
出版日期:
2017-07-10

文章信息/Info

Title:
 Defect Prediction of Co-training Software with Non-negative Sparse Graph
文章编号:
1673-629X(2017)07-0038-05
作者:
 张志武[1] 荆晓远[2][3] 吴飞[2]
 1.南京邮电大学 计算机学院;2.南京邮电大学 自动化学院;3.武汉大学 软件工程国家重点实验室
Author(s):
 ZHANG Zhi-wu[1] JING Xiao-yuan[2] [3]WU Fei[2]
关键词:
 非负稀疏图协同训练半监督学习软件缺陷预测
Keywords:
 non-negative sparse graphco-trainingsemi-supervised learningsoftware defect prediction
分类号:
TP311
文献标志码:
A
摘要:
 软件缺陷预测是一种可提高软件系统质量和优化测试资源分配的软件系统可靠性保证方法.当软件历史仓库中有标记训练模块较少时,应用机器学习方法构建有效的预测分类器是一个有挑战性的问题.为此,提出了一种基于非负稀疏图的协同训练软件缺陷预测方法,该方法汇集基于图的半监督学习方法和协同训练方法的优点,对无标记数据进行显示置信度估计.其利用软件模块间的相似性构建一个非负稀疏图,图中边的权重反映了样本间的相似度;利用协同训练的三个分类器对无标记样本的隐式选择和显示计算其所属类别的置信度,选取可靠的无标记样本辅助有标记样本进行训练以减少噪声数据的引入,并逐个迭代更新分类器,直至达到最大迭代次数或分类器识别率降低为止.基于NASA MDP数据集的验证实验结果表明,所提出的方法优于具有代表性的半监督协同训练方法.
Abstract:
 Software defect prediction is a system reliability assurance method which can improve the quality of software system and optimize the distribution of test resources.When the previous defect labels of modules in software history warehouse are limited,building an effective prediction classifier by using machine learning methods becomes a challenging problem.Aiming at this problem,a co-training algorithm for software defect prediction based on non-negative sparse graph is proposed,which combines with the advantages of the graph-based semi-supervised learning method and the co-training method and estimates the confidence of unlabeled data.A non-negative sparse graph has been constructed by the similarity between the software modules so that the edge of the graph reflects the similarity between samples.Then three classifiers have been employed for co-training.In order to reduce the introduction of noise data,the reliable unlabeled samples have been selected for training by the implicit selection of the three classifiers and the confidence estimation of the categories.The classifiers keep to iteratively updating until the maximum number of iterations has reached or the recognition rates of classifiers have been reduced.Experimental results on NASA MDP datasets show that the proposed method is superior to the representative semi-supervised co-training method.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(07):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(07):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(07):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(07):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(07):47.

更新日期/Last Update: 2017-08-22