[1]薛海双,孙林慧,欧国振. 平滑L0算法在语音压缩重构中的应用[J].计算机技术与发展,2017,27(06):160-164.
 XUE Hai-shuang,SUN Lin-hui,OU Guo-zhen. Application of Smoothed L0 Algorithm in Compressed Sensing Reconstruction of Speech Signal[J].,2017,27(06):160-164.
点击复制

 平滑L0算法在语音压缩重构中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年06期
页码:
160-164
栏目:
应用开发研究
出版日期:
2017-06-10

文章信息/Info

Title:
 Application of Smoothed L0 Algorithm in Compressed Sensing Reconstruction of Speech Signal
文章编号:
1673-629X(2017)06-0160-05
作者:
 薛海双孙林慧欧国振
 南京邮电大学 通信与信息工程学院
Author(s):
 XUE Hai-shuangSUN Lin-hui OU Guo-zhen
关键词:
 压缩感知语音重构重构算法平滑L0算法平滑函数L0范数
Keywords:
 compressed sensingspeech reconstructionalgorithms of reconstructionsmoothed L0 algorithmsmooth functionL0 norm
分类号:
TP39
文献标志码:
A
摘要:
 语音信号在频域和离散余弦变换域等都具有良好的稀疏特性,满足压缩感知的先验条件,因此可以基于压缩感知对语音信号进行处理.语音压缩感知主要包括三个方面:稀疏基、观测矩阵和重构算法.其中,重构算法直接影响着重构信号的质量,是最重要的一部分.传统的语音压缩感知常基于正交匹配追踪算法进行重构.正交匹配追踪算法要求已知信号稀疏度,增加了实现的难度.为了提高语音信号的重构质量、简化实现过程,提出了一种基于平滑L0算法的语音压缩重构模型.平滑L0算法是用平滑函数逼近L0范数,它不需要提前知道信号的稀疏度,具有计算量低、重构质量高等优点.此外,提出了一种新的平滑函数,并基于高斯函数和新的平滑函数来验证平滑L0算法在语音压缩重构中的优越性.实验结果表明,在相同的条件下,相比于正交匹配追踪算法,使用平滑L0算法对语音进行重构,不仅缩短了重构时间,而且大大提高了重构质量.
Abstract:
 At present,speech signals have good sparsities in domains like frequency and Discrete Cosine Transformation (DCT) and so on,which satisfies the prerequisite for Compressed Sensing (CS).Therefore,it can be treated by CS theory,which consists of sparse representation of the signal,design of the measurement matrix and the algorithms of reconstruction.Among them,the most important part is reconstruction algorithms which can influence the quality of reconstructed signals directly.The traditional compressed sensing reconstruction of speech is usually based on Orthogonal Matching Pursuit (OMP) method.The orthogonal matching pursuit method needs to obtain sparse priors of the speech signal in advance,which makes the realization difficult.In order to improve the reconstruction quality of speech signal and simplify the implementation process,a compressed speech’’s reconstruction method based on Smoothed L0 (SL0) algorithm has been proposed,in which the SL0 uses smooth function to approximate L0 norm without acquisition of sparse priors of the speech signal in advance and with advantages of lower calculation capacity and higher quality of reconstruction.In addition,a new smooth function has been proposed.Gaussian function and the new smooth function are used to confirm the performance of the SL0.Simulation results demonstrate that the SL0 algorithm has not only obtained a higher quality of reconstruction than the traditional OMP method,but also shorten the implementation time.

相似文献/References:

[1]张爱华 薄禄裕 盛飞 杨培.基于小波变换的压缩感知在图像加密中的应用[J].计算机技术与发展,2011,(12):145.
 ZHANG Ai-hua,BO Lu-yu,SHENG Fei,et al.Compressed Sensing Based on Single Layer Wavelet Transform for Image Encryption[J].,2011,(06):145.
[2]王韦刚 庄伟胤.基于NIOS Ⅱ的图像压缩感知[J].计算机技术与发展,2012,(04):12.
 WANG Wei-gang,ZHUANG Wei-yin.Compressed Sensing of Image Based on NIOS Ⅱ[J].,2012,(06):12.
[3]王韦刚 胡海峰.基于压缩感知的协作频谱检测[J].计算机技术与发展,2012,(12):241.
 WANG Wei-gang,HU Hai-feng.Collaborative Spectrum Detection Based on Compressed Sensing[J].,2012,(06):241.
[4]张晓咏,熊承义,胡开云,等.基于灰度纹理信息的图像压缩感知编码与重构[J].计算机技术与发展,2013,(01):47.
[5]刘洋,季薇,侯晓赟.一种改进的基于 OMP 重建的宽带频谱感知算法[J].计算机技术与发展,2013,(01):99.
 LIU Yang,JI Wei,HOU Xiao-yun.A Modified Spectrum Sensing Algorithm for Wideband Cognitive Radio Based on OMP[J].,2013,(06):99.
[6]彭钰,侯晓赟.基于二维压缩感知的双选信道估计[J].计算机技术与发展,2013,(10):220.
 PENG Yu,HOU Xiao-yun.Doubly Selective Channel Estimation Based on Two Dimension Compressed Sensing[J].,2013,(06):220.
[7]李熔.基于截尾估计的概率估计方法[J].计算机技术与发展,2014,24(02):101.
 LI Rong.Probability Estimation Method Based on Truncated Estimation[J].,2014,24(06):101.
[8]李燕,王博.基于压缩感知的数据压缩与检测[J].计算机技术与发展,2014,24(03):198.
 LI Yan,WANG Bo.Data Compression and Detection Based on Compressive Sensing[J].,2014,24(06):198.
[9]周飞飞,李雷.小波高频子带变换裁剪阈值SAMP算法研究[J].计算机技术与发展,2014,24(05):83.
 ZHOU Fei-fei,LI Lei.Research on Clipping Threshold SAMP Algorithm Based on High Frequency Sub-band Wavelet Transform[J].,2014,24(06):83.
[10]刘正其,季薇.一种改进的基于BOMP的宽带频谱感知算法[J].计算机技术与发展,2014,24(06):118.
 LIU Zheng-qi,JI Wei.A Modified Spectrum Sensing Algorithm for Wideband Cognitive Radio Based on BOMP[J].,2014,24(06):118.
[11]徐志坚,邱晓晖. 采用压缩感知的协作多点信道反馈算法研究[J].计算机技术与发展,2014,24(10):221.
 XU Zhi-jian,QIU Xiao-hui. Study on Channel Feedback Algorithm Using Compressed Sensing for Coordinated Multiple Point[J].,2014,24(06):221.
[12]柯家龙,李继楼. 压缩感知中的投影矩阵优化算法[J].计算机技术与发展,2015,25(03):95.
 KE Jia-long,LI Ji-lou. Algorithm of Optimization for Projection Matrix in Compressive Sensing[J].,2015,25(06):95.
[13]李尚靖[],朱琦[][],朱俊华[]. 基于压缩感知和正弦字典的语音编码新方案[J].计算机技术与发展,2015,25(04):188.
 LI Shang-jing[],ZHU Qi[][],ZHU Jun-hua[]. A New Scheme of Speech Coding Based on Compressed Sensing and Sinusoidal Dictionary[J].,2015,25(06):188.
[14]郭海亮. 基于GEP算法的压缩感知语音观测序列建模[J].计算机技术与发展,2015,25(05):46.
 GUO Hai-liang. Speech Signals Measurements Sequence Modeling in Compressed Sensing Based on GEP[J].,2015,25(06):46.
[15]郭青青,李雷. 基于SiT-ROMP算法的视频封装帧压缩重构研究[J].计算机技术与发展,2015,25(08):113.
 GUO Qing-qing,LI Lei. Research on Compressing and Reconstructing of Encapsulated Video Frame Based on Self-iterative Threshold ROMP Algorithm[J].,2015,25(06):113.
[16]李继楼,柯家龙. 基于压缩感知的WSN数据压缩与重构[J].计算机技术与发展,2015,25(09):111.
 LI Ji-lou,KE Jia-long. Data Compression and Recovery of WSN Based on Compressive Sensing[J].,2015,25(06):111.
[17]钱阳,李雷. 一种基于新型KPCA算法的视频压缩感知算法[J].计算机技术与发展,2015,25(10):101.
 QIAN Yang,LI Lei. A Video Compressed Sensing Algorithm Based on Novel KPCA[J].,2015,25(06):101.
[18]玲玲,齐丽娜. 特征字典与自适应联合的BCS-UWB信道估计[J].计算机技术与发展,2015,25(12):195.
 WANG Ling-ling,QI Li-na. Ultra-wideband Channel Estimation Based on Bayesian Compressive Sensing of Eigen-based Dictionary and Adaptive Joint[J].,2015,25(06):195.
[19]孙君,孙照伟. 基于压缩感知的信道互易性补偿方法[J].计算机技术与发展,2015,25(12):210.
 SUN Jun,SUN Zhao-wei. A Compensation Method for Channel Non-reciprocity Based on Compressive Sensing[J].,2015,25(06):210.
[20]于云,周伟栋. 基于压缩感知的鲁棒性说话人识别参数研究[J].计算机技术与发展,2016,26(03):18.
 YU Yun,ZHOU Wei-dong. Research on Robust Speaker Recognition Parameters Based on Compressed Sensing[J].,2016,26(06):18.

更新日期/Last Update: 2017-07-28