[1]邱东,刘明硕,郭红涛. 基于粒子群算法的低碳铬铁磷含量预测研究[J].计算机技术与发展,2017,27(06):142-145.
 QIU Dong,LIU Ming-shuo,GUO Hong-tao. Investigation on Prediction of Phosphorus Content of Low Carbon Ferrochrome with Particle Swarm Optimization[J].,2017,27(06):142-145.
点击复制

 基于粒子群算法的低碳铬铁磷含量预测研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年06期
页码:
142-145
栏目:
应用开发研究
出版日期:
2017-06-10

文章信息/Info

Title:
 Investigation on Prediction of Phosphorus Content of Low Carbon Ferrochrome with Particle Swarm Optimization
文章编号:
1673-629X(2017)06-0142-04
作者:
 邱东刘明硕郭红涛
 长春工业大学 电气与电子工程学院
Author(s):
 QIU DongLIU Ming-shuoGUO Hong-tao
关键词:
 粒子群算法RBF神经网络AOD炉预测控制
Keywords:
 PSORBF neural networksAOD furnacepredictive control
分类号:
TF533.2
文献标志码:
A
摘要:
 低碳铬铁合金冶炼是一种高耦合多相位的物理化学过程,磷是其工艺过程中影响铬铁合金产品质量的主要杂质之一.为实现降低磷含量并提高铬铁合金的产品质量,以神经网络预测理论为指导,以RBF人工神经网络作为AOD炉冶炼过程预测和系统辨识的途径,基于某铁合金公司的生产样本数据,建立了磷含量的神经网络在线预测平台,将其预测的输出值与实际样本值之间的灰色关联度作为研究的目标函数,并利用改进的粒子群算法(PSO)解决了一般RBF神经网络出现局部最优的问题,使得磷含量预测误差明显减少,实现了对磷含量的优化控制.研究结果表明,所建立改进的PSO优化预测控制模型精度提高到95.4%,分散度在±0.003%之内,为改进冶炼工艺、提高铬铁合金产品质量提供了重要的预测手段.
Abstract:
 Low carbon ferrochrome smelting is a physical and chemical processing with extreme coupling and multiphase.The discretion of the phosphorus’’ impurity content is an important factor which affects the quality of ferrochrome products.In order to reduce the content of phosphorus and raise the quality of ferrochrome,based on the production sampling data from a ferroalloy company,an online prediction platform of neural network of phosphorus content is set up with the neural network prediction theory as the guidance and RBF neural network as the approach of AOD furnace prediction and system identification.The gray correlation between predicted ouput and actual sampling is selected as the objective function.At the same time,the modified Particle Swarm Optimization (PSO) has been used to solve an local optimization problem of the general neural network,appratent reduction of predictive error of phosphorus content and implementation of its optimized control.The simulation results show that the optimization control model is 95.4% within the dispersion of ±0.003%,which has realized effectively phosphorus content optimal control,which can provide an important theoretical support for improving the quality of low carbon ferrochromium.

相似文献/References:

[1]张爱华 江中勤 张华.基于粒子群优化算法的分形图像压缩编码[J].计算机技术与发展,2010,(02):21.
 ZHANG Ai-hua,JIANG Zhong-qin,ZHANG Hua.Fractal Image Compression Coding Based on PSO[J].,2010,(06):21.
[2]唐俊.PSO算法原理及应用[J].计算机技术与发展,2010,(02):213.
 TANG Jun.Principle and Application of PSO Algorithm[J].,2010,(06):213.
[3]张捍东 廖天红 岑豫皖.用模拟退火思想的粒子群算法实现图像分割[J].计算机技术与发展,2010,(05):83.
 ZHANG Han-dong,LIAO Tian-hong,CEN Yu-wan.Image Segmentation Through Particle Swarm Optimization Based on Simulated Annealing[J].,2010,(06):83.
[4]廖锋 高兴宝.差分演化算法在约束优化问题中的应用[J].计算机技术与发展,2010,(05):187.
 LIAO Feng,GAO Xing-bao.Application of Differential Evolution Algorithms on Constraint Optimization Problems[J].,2010,(06):187.
[5]来磊 卢文科 邓开连.基于二维Tsallis交叉熵直线型图像阈值分割方法[J].计算机技术与发展,2010,(06):105.
 LAI Lei,LU Wen-ke,DENG Kai-lian.New Image Thresholding Segmentation Methods Based on Two-Dimensional Tsallis Cross-Entropy Liner-Type[J].,2010,(06):105.
[6]邹毅 朱晓萍 王秀平.一种基于混沌优化的混合粒子群算法[J].计算机技术与发展,2009,(11):18.
 ZOU Yi,ZHU Xiao-ping,WANG Xiu-ping.A Hybrid PSO Algorithm Based on Chaos Optimization[J].,2009,(06):18.
[7]王为为 程家兴 贺晟.基于佳点集交叉的粒子群算法[J].计算机技术与发展,2009,(12):32.
 WANG Wei-wei,CHENG Jia-xing,HE Sheng.Particle Swarm Algorithm Based on Good Point Set Crossover[J].,2009,(06):32.
[8]贾瑞玉 黄义堂 邢猛.一种动态改变权值的简化粒子群算法[J].计算机技术与发展,2009,(02):137.
 JIA Rui-yu,HUANG Yi-tang,XING Meng.A Modified Simple Particle Swarm Optimization Using Dynamically Decreasing Inertia Weight[J].,2009,(06):137.
[9]卢珊萍 于盛林.基于粒子群算法的细胞神经网络模板参数设计[J].计算机技术与发展,2009,(04):83.
 LU Shan-ping,YU Sheng-lin.A Template Design Method for Cellular Neural Network Based on Particle Swarm Optimizer Algorithm[J].,2009,(06):83.
[10]王艳玲 李龙澍 胡哲.群体智能优化算法[J].计算机技术与发展,2008,(08):114.
 WANG Yan-ling,LI Long-shu,HU Zhe.Swarm Intelligence Optimization Algorithm[J].,2008,(06):114.
[11]杨思燕[],陈为胜[]. 基于数据同化的图像融合方法研究[J].计算机技术与发展,2014,24(11):69.
 YANG Si-yan[],CHEN Wei-sheng[]. Research on Image Fusion Method Based on Data Assimilation[J].,2014,24(06):69.
[12]李锋. 粒子群模糊聚类算法在入侵检测中的研究[J].计算机技术与发展,2014,24(12):138.
 LI Feng. Research on Fuzzy Clustering Algorithm Based on PSO in IDS[J].,2014,24(06):138.
[13]刘慧慧. 一种改进的粒子群多目标优化算法研究[J].计算机技术与发展,2015,25(01):87.
 LIU Hui-hui. Research on an Improved Multi-objective Optimization Algorithm of Particle Swarm[J].,2015,25(06):87.
[14]侯翔,廖小平. 基于PSO算法的洪水预报模型研究[J].计算机技术与发展,2015,25(04):200.
 HOU Xiang,LIAO Xiao-ping. Research on Flood Forecasting Model Based on PSO[J].,2015,25(06):200.
[15]陈志凡[],单剑锋[],宋晓涛[],等. 基于PSO-LSSVM的模拟电路故障诊断[J].计算机技术与发展,2015,25(05):209.
 CHEN Zhi-fan[],SHAN Jian-feng[],SONG Xiao-tao[],et al. Analog Circuit Fault Diagnosis Based on PSO-LSSVM[J].,2015,25(06):209.
[16]胡天骐[],单剑锋[],宋晓涛[]. 基于改进PSO-LSSVM的模拟电路诊断方法[J].计算机技术与发展,2015,25(06):193.
 HU Tian-qi[],SHAN Jian-feng[],SONG Xiao-tao[]. Analog Circuit Fault Diagnosis Method Based on PSO-LSSVM[J].,2015,25(06):193.
[17]胡存刚,程莹. 基于粒子群算法的大数据智能搜索引擎的研究[J].计算机技术与发展,2015,25(12):14.
 HU Cun-gang,CHENG Ying. Research on Big Data Intelligent Search Engine Based on PSO[J].,2015,25(06):14.
[18]刘春燕[],杨巍巍[]. 云计算基于遗传粒子群算法的多目标任务调度[J].计算机技术与发展,2017,27(02):56.
 LIU Chun-yan[],YANG Wei-wei[]. A Multi-objective Task Scheduling Based on Genetic and Particle Swarm Optimization Algorithm for Cloud Computing[J].,2017,27(06):56.
[19]李策,王保云,高浩. 基于自适应粒子群算法的特征选择[J].计算机技术与发展,2017,27(04):89.
 LI Ce,WANG Bao-yun,GAO Hao. Feature Selection Based on Adaptive Particle Swarm Optimization[J].,2017,27(06):89.
[20]梅朵[],郑黎黎[],刘春晓[],等. 基于混合算法优化SVM的短时交通流预测[J].计算机技术与发展,2017,27(11):92.
 MEI Duo[],ZHENG Li-li[],LIU Chun-xiao[],et al. A Short-term Traffic Flow Prediction Model Based on Support Vector Machine Optimized by Hybrid Algorithm[J].,2017,27(06):92.

更新日期/Last Update: 2017-07-28