[1]顾炎,熊超. 动态社区的点增量发现算法[J].计算机技术与发展,2017,27(06):81-85.
 GU Yan,XIONG Chao. Vertex-based Incremental Algorithm for DynamicCommunities Detecting[J].,2017,27(06):81-85.
点击复制

 动态社区的点增量发现算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年06期
页码:
81-85
栏目:
智能、算法、系统工程
出版日期:
2017-06-10

文章信息/Info

Title:
 Vertex-based Incremental Algorithm for DynamicCommunities Detecting
文章编号:
1673-629X(2017)06-0081-05
作者:
 顾炎熊超
 南京邮电大学 计算机学院
Author(s):
 GU YanXIONG Chao
关键词:
 节点增量动态网络社区发现
Keywords:
 vertexincrementaldynamic networkcommunity detecting
分类号:
TP391
文献标志码:
A
摘要:
 当前复杂网络中动态社区发现方式大多为孤立地考察当前时间节点,没有利用之前时间节点上社区结构的信息,因而产生了大量的冗余计算.为解决此问题,基于动态社会网络在短时间内未发生过多改变的短时平滑性假设,提出了一种增量聚类动态社区发现算法.该算法将物理学领域万有引力的思想引入到动态社区发现中,针对动态社会网络中的节点,定义了节点间的相互作用力,在t-1与t时刻社区变化差量的基础上,通过比较节点间作用力对节点的社区归属进行了分析和调整,以期在t时刻快速准确地发现动态社区.在安然邮件数据集上的实验表明,当网络中的节点数量达到104以上,提出的算法能够在两分钟左右的时间内挖掘出模块度为0.53左右的社区结构,优于其他几种算法,说明该方法能够快速准确地挖掘出较好的社区结构.
Abstract:
 Currently,most ways of community detection in dynamic complex networks belongs to separate observations on nonce time nodes without utilization of community structural information on former time nodes,thus more redundant computation has been generated.To solve this problem,on the short-term smoothness assumption that the dynamic community networks could not generate too many changes in short-time interval,an incremental clustering algorithm for detecting dynamic communities has been proposed.The universal gravitation in physic field has been introduced into community detection and mutual forces has been defined between nodes in dynamic community.The community adscription of the node has been analyzed and adjusted through comparison of the mutual forces based on the difference between t-1 and t interval so as to detect dynamic community quickly and accurately at t interval.Results of experiments on Enron email dataset show that when the network has more than 104 vertices,the proposed algorithm can detect community structures with modularity at around 0.53 within about two minutes and is more efficient than other algorithms,and thus it can detect dynamic community structures quickly and accurately.

相似文献/References:

[1]杨树森 周小佳 阎斌.无线传感器网络在环境监测中的应用[J].计算机技术与发展,2008,(09):170.
 YANG Shu-sen,ZHOU Xiao-jia,YAN Bin.An Environment Monitor System Based on Wireless Sensor Network[J].,2008,(06):170.
[2]陈帅 钟先信 廖晓纬 石军锋.无线传感器网络节点实现模型[J].计算机技术与发展,2007,(03):176.
 CHEN Shuai,ZHONG Xian-xin,LIAO Xiao-wei,et al.Realization Model of Wireless Sensor Network Nodes[J].,2007,(06):176.
[3]赵海峰 孔敏 罗斌.八元树三维表示法的磁盘存储与恢复[J].计算机技术与发展,2006,(08):176.
 ZHAO Hai-feng,KONG Min,LUO Bin.Disk Storage and Restoration of Octree for 3D Representation[J].,2006,(06):176.
[4]何敏佳 张燕.梯形图与指令表互译算法的设计与实现[J].计算机技术与发展,2011,(11):208.
 HE Min-jia,ZHANG Yan.Translation Algorithm Design and Implementation of Ladder Diagram and Instructions Table[J].,2011,(06):208.
[5]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(06):1.
[6]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(06):5.
[7]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(06):13.
[8]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(06):21.
[9]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(06):25.
[10]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(06):29.

更新日期/Last Update: 2017-07-26