[1]兰明然,王友国. 基于压缩感知中矩阵分解的观测矩阵改进[J].计算机技术与发展,2017,27(06):56-59.
 LAN Ming-ran,WANG You-guo. Improvement of Measurement Matrix with Matrix Decomposition in Compressive Sensing[J].,2017,27(06):56-59.
点击复制

 基于压缩感知中矩阵分解的观测矩阵改进()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年06期
页码:
56-59
栏目:
智能、算法、系统工程
出版日期:
2017-06-10

文章信息/Info

Title:
 Improvement of Measurement Matrix with Matrix Decomposition in Compressive Sensing
文章编号:
1673-629X(2017)06-0056-04
作者:
 兰明然王友国
 南京邮电大学 理学院
Author(s):
 LAN Ming-ranWANG You-guo
关键词:
 压缩感知观测矩阵QR分解SVD分解
Keywords:
 compressive sensingmeasurement matrixQR decompositionsingular value decomposition
分类号:
TP31
文献标志码:
A
摘要:
 观测矩阵构造是压缩感知(CS)理论中的重点.在构造观测矩阵中,应尽可能地降低观测矩阵与稀疏变换基之间的相关性,同时增大观测矩阵列的独立性.为此,提出了一种新的改进方法.该方法采用梯度下降法处理Gram矩阵以降低其非对角线元素,在对所得到的观测矩阵进行QR分解的基础上,再对QR分解后的矩阵进行奇异值(SVD)分解,以进一步增大观测矩阵的列独立性.为了验证所提出算法的有效性,将所得观测矩阵分别与未优化的高斯矩阵、经SVD分解优化的高斯矩阵和梯度下降法优化的高斯矩阵在同等压缩比下进行了对比仿真实验.对比仿真实验结果表明,应用所提出算法而得到的矩阵具有较好的重构性能,特别当压缩比小于0.3时,对应于未经优化的观测矩阵,峰值信噪比提高约2至3倍.
Abstract:
 The structure of measurement matrix is the key point in the theory of Compressive Sensing (CS).In the measurement matrix constructing,it is possible to reduce the correlation between the measurement matrix and the sparse transformation matrix,and to increase the independence of the measurement matrix.A new improved method has been proposed for this purpose,which uses gradient Gram matrix to reduce its non-diagonal elements with descent method of measurement matrix obtained by QR decomposition.After decomposition of the QR matrix,Singular Value Decomposition (SVD) has been implemented to further increase the independence among the measurement matrix.In order to verify the effectiveness of the proposed algorithm,contrast experiments of matrix acquired by the proposed method with three types of Gauss matrices,such as these without optimization,optimized by SVD decomposition and optimized by gradient descent method,have been carried out at the same compression.The experimental simulation results show that the proposed algorithm and thus the reconstruction matrix have displayed better performance,especially when the compression ratio is less than 0.3,the peak signal-to-noise ratio has increased about 2 to 3 times comparing with the measurement matrix without optimization.

相似文献/References:

[1]张爱华 薄禄裕 盛飞 杨培.基于小波变换的压缩感知在图像加密中的应用[J].计算机技术与发展,2011,(12):145.
 ZHANG Ai-hua,BO Lu-yu,SHENG Fei,et al.Compressed Sensing Based on Single Layer Wavelet Transform for Image Encryption[J].,2011,(06):145.
[2]王韦刚 庄伟胤.基于NIOS Ⅱ的图像压缩感知[J].计算机技术与发展,2012,(04):12.
 WANG Wei-gang,ZHUANG Wei-yin.Compressed Sensing of Image Based on NIOS Ⅱ[J].,2012,(06):12.
[3]王韦刚 胡海峰.基于压缩感知的协作频谱检测[J].计算机技术与发展,2012,(12):241.
 WANG Wei-gang,HU Hai-feng.Collaborative Spectrum Detection Based on Compressed Sensing[J].,2012,(06):241.
[4]张晓咏,熊承义,胡开云,等.基于灰度纹理信息的图像压缩感知编码与重构[J].计算机技术与发展,2013,(01):47.
[5]刘洋,季薇,侯晓赟.一种改进的基于 OMP 重建的宽带频谱感知算法[J].计算机技术与发展,2013,(01):99.
 LIU Yang,JI Wei,HOU Xiao-yun.A Modified Spectrum Sensing Algorithm for Wideband Cognitive Radio Based on OMP[J].,2013,(06):99.
[6]彭钰,侯晓赟.基于二维压缩感知的双选信道估计[J].计算机技术与发展,2013,(10):220.
 PENG Yu,HOU Xiao-yun.Doubly Selective Channel Estimation Based on Two Dimension Compressed Sensing[J].,2013,(06):220.
[7]李熔.基于截尾估计的概率估计方法[J].计算机技术与发展,2014,24(02):101.
 LI Rong.Probability Estimation Method Based on Truncated Estimation[J].,2014,24(06):101.
[8]李燕,王博.基于压缩感知的数据压缩与检测[J].计算机技术与发展,2014,24(03):198.
 LI Yan,WANG Bo.Data Compression and Detection Based on Compressive Sensing[J].,2014,24(06):198.
[9]周飞飞,李雷.小波高频子带变换裁剪阈值SAMP算法研究[J].计算机技术与发展,2014,24(05):83.
 ZHOU Fei-fei,LI Lei.Research on Clipping Threshold SAMP Algorithm Based on High Frequency Sub-band Wavelet Transform[J].,2014,24(06):83.
[10]刘正其,季薇.一种改进的基于BOMP的宽带频谱感知算法[J].计算机技术与发展,2014,24(06):118.
 LIU Zheng-qi,JI Wei.A Modified Spectrum Sensing Algorithm for Wideband Cognitive Radio Based on BOMP[J].,2014,24(06):118.
[11]徐志坚,邱晓晖. 采用压缩感知的协作多点信道反馈算法研究[J].计算机技术与发展,2014,24(10):221.
 XU Zhi-jian,QIU Xiao-hui. Study on Channel Feedback Algorithm Using Compressed Sensing for Coordinated Multiple Point[J].,2014,24(06):221.
[12]柯家龙,李继楼. 压缩感知中的投影矩阵优化算法[J].计算机技术与发展,2015,25(03):95.
 KE Jia-long,LI Ji-lou. Algorithm of Optimization for Projection Matrix in Compressive Sensing[J].,2015,25(06):95.
[13]李尚靖[],朱琦[][],朱俊华[]. 基于压缩感知和正弦字典的语音编码新方案[J].计算机技术与发展,2015,25(04):188.
 LI Shang-jing[],ZHU Qi[][],ZHU Jun-hua[]. A New Scheme of Speech Coding Based on Compressed Sensing and Sinusoidal Dictionary[J].,2015,25(06):188.
[14]郭海亮. 基于GEP算法的压缩感知语音观测序列建模[J].计算机技术与发展,2015,25(05):46.
 GUO Hai-liang. Speech Signals Measurements Sequence Modeling in Compressed Sensing Based on GEP[J].,2015,25(06):46.
[15]郭青青,李雷. 基于SiT-ROMP算法的视频封装帧压缩重构研究[J].计算机技术与发展,2015,25(08):113.
 GUO Qing-qing,LI Lei. Research on Compressing and Reconstructing of Encapsulated Video Frame Based on Self-iterative Threshold ROMP Algorithm[J].,2015,25(06):113.
[16]李继楼,柯家龙. 基于压缩感知的WSN数据压缩与重构[J].计算机技术与发展,2015,25(09):111.
 LI Ji-lou,KE Jia-long. Data Compression and Recovery of WSN Based on Compressive Sensing[J].,2015,25(06):111.
[17]钱阳,李雷. 一种基于新型KPCA算法的视频压缩感知算法[J].计算机技术与发展,2015,25(10):101.
 QIAN Yang,LI Lei. A Video Compressed Sensing Algorithm Based on Novel KPCA[J].,2015,25(06):101.
[18]玲玲,齐丽娜. 特征字典与自适应联合的BCS-UWB信道估计[J].计算机技术与发展,2015,25(12):195.
 WANG Ling-ling,QI Li-na. Ultra-wideband Channel Estimation Based on Bayesian Compressive Sensing of Eigen-based Dictionary and Adaptive Joint[J].,2015,25(06):195.
[19]孙君,孙照伟. 基于压缩感知的信道互易性补偿方法[J].计算机技术与发展,2015,25(12):210.
 SUN Jun,SUN Zhao-wei. A Compensation Method for Channel Non-reciprocity Based on Compressive Sensing[J].,2015,25(06):210.
[20]于云,周伟栋. 基于压缩感知的鲁棒性说话人识别参数研究[J].计算机技术与发展,2016,26(03):18.
 YU Yun,ZHOU Wei-dong. Research on Robust Speaker Recognition Parameters Based on Compressed Sensing[J].,2016,26(06):18.

更新日期/Last Update: 2017-07-26