[1]陆超. PCA方法的运动轨迹检测算法研究[J].计算机技术与发展,2017,27(05):179-182.
 LU Chao. Research on Motion Trajectory Detection Algorithm with PCA[J].,2017,27(05):179-182.
点击复制

 PCA方法的运动轨迹检测算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年05期
页码:
179-182
栏目:
应用开发研究
出版日期:
2017-05-10

文章信息/Info

Title:
 Research on Motion Trajectory Detection Algorithm with PCA
文章编号:
1673-629X(2017)05-0179-04
作者:
 陆超
 南京邮电大学 通信与信息工程学院
Author(s):
 LU Chao
关键词:
 加速度传感器主成分分析轨迹检测误差处理
Keywords:
 accelerometer principal component analysistrajectory detectionerror handling
分类号:
TP301.6
文献标志码:
A
摘要:
 以陀螺和加速度计为敏感器件的导航参数解算系统称之为惯性导航系统,通过陀螺的输出建立导航坐标系,而加速度计的输出可以算出运动物体的速度和位置.MPU6050整合了三轴陀螺仪,三轴加速度器,磁力传感器或者其他传感器.它可含有两个I2C端口,可以进行数位运动处理,向运动端输出单一形式的数据流.针对运动传感器应用广泛的现状,提出了一种采用MPU6050模块的运动轨迹检测算法设计方案.轨迹检测的原理是加速度经过二重积分后可以得到位移.由于加速度传感器输出存在积累误差,采用了主成分分析(PCA)方法来抑制积累误差.用PCA进行特征提取,对运动状态下的加速度和速度进行修正,消除积累误差并重建轨迹.传感器的硬件平台搭建主控制器为STM32,通过MATLAB软件绘图功能,利用多组三个方向加速度值和三个方向角速度值来做出运动轨迹和解算姿态.实验结果表明:所述方法使得物体运动轨迹检测的精准度有所提高.
Abstract:
 Parameter calculation system is called inertial navigation system by using gyro and accelerometer as sensing devices.The navigation coordinate system is established through the output of the gyro.The output of the accelerometer can calculate the speed and position of the moving object.MPU6050 integrates three-axis gyroscope,three-axis accelerometer,magnetic sensor or the other sensors.It can contain two I2C ports and perform digital motion processing.A single form of data stream can be output to the moving end.The application of motion sensor is wide,and the trajectory detection algorithm of a moving object used by MPU6050 module has been designed in this paper.The principle of trajectory detection is that the acceleration can be obtained by double integral.There is an accumulated error in the output of the accelerometer,so an approach for eliminating accumulated error of accelerometer based on PCA has been presented.After feature extraction has been conducted with PCA,the acceleration and velocity are modified.Elimination of accumulated error is carried out and trajectory is reconstructed.Sensor hardware platform to build the main controller is STM32.Through the drawing function of the MATLAB software,the use of multiple sets of three direction acceleration and three direction angular velocity values is to make the motion trajectory and calculate the attitude.The experimental results show that the method can improve the accuracy of the object motion trajectory detection.

相似文献/References:

[1]王雨,陈常嘉,董岩磊.基于加速度传感器的车辆防盗技术研究[J].计算机技术与发展,2013,(05):135.
 WANG Yu,CHEN Chang-jia,DONG Yan-lei.Research on Vehicle’s Anti-theft Technique Based on Acceleration Sensor[J].,2013,(05):135.
[2]谢泽奇,张会敏.基于MMA8452Q的肢体动作识别系统的设计[J].计算机技术与发展,2014,24(02):198.
 XIE Ze-qi,ZHANG Hui-min.Design of a Gesture Recognition System Based on MMA8452Q[J].,2014,24(05):198.
[3]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(05):1.
[4]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(05):5.
[5]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(05):13.
[6]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(05):21.
[7]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(05):25.
[8]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(05):29.
[9]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(05):34.
[10]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(05):38.

更新日期/Last Update: 2017-07-07