[1]孙君,谷苏文. 自适应簇和学习算法的调度策略[J].计算机技术与发展,2017,27(05):92-96.
 SUN Jun,GU Su-wen. Dispatching Strategy with Adaptive Clustering and Learning Algorithm[J].,2017,27(05):92-96.
点击复制

 自适应簇和学习算法的调度策略()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年05期
页码:
92-96
栏目:
智能、算法、系统工程
出版日期:
2017-05-10

文章信息/Info

Title:
 Dispatching Strategy with Adaptive Clustering and Learning Algorithm
文章编号:
1673-629X(2017)05-0092-05
作者:
 孙君谷苏文
 南京邮电大学
Author(s):
 SUN JunGU Su-wen
关键词:
 以用户为中心自适应簇学习算法泊松点过程
Keywords:
 user-centricadaptive clusteringlearning algorithmPoisson Point Processes (PPP)
分类号:
TP31
文献标志码:
A
摘要:
 提升用户的峰值速率和吞吐量性能一直以来是一个非常重要但同时又具有挑战性的问题.密集蜂窝网络中,采用了以用户为中心的自适应簇和基于学习算法高速缓存方法的调度方法,一定程度上可以改善用户的峰值速率和吞吐量性能;应用调度策略的网络中,以用户为中心的自适应簇方法能实现每个用户的效吞吐量最大化.若小基站有很高的存储容量,常用的数据被储存在本地小基站的缓存器中,用户可以通过学习算法选择附近小基站中的一个来获得想要的数据.当用户进行通信时,可计算出此时自适应簇的最大化归一化有效吞吐量,大于门限值时选择基于自适应簇的通信,否则采用基于学习算法的方法选择最优的小基站进行通信.这种新颖的网络架构能够为用户提供个性化的网络服务,提升用户的峰值速率和吞吐量性能.
Abstract:
 With the development of mobile communication networks,enhancing peak rate and throughput performance for users has always been a very important but challenging issue.In a dense cellular network,a dispatching strategy which is based on user-centric adaptive clustering and a learning algorithm has been studied.A large and dense cellular network has been considered which has been modeled by a random network where the BSs’ and UEs’ locations are placed randomly,following Poisson Point Process (PPP) distributions.An adaptive clustering algorithm for user-centric has been described,which means generating a cell for each user,and all base stations within the district can provide services for user,it is proposed also to maximize each user normalized effective throughput.SBS are assumed to possess high storage capacity and to form a distributed caching network.Popular files are stored in local cache of SBS in its vicinity.The popularity profile of cached content is unknown and estimated using instantaneous demands from users within a specified time interval.When a user goes to communication,the effective throughput of normalization with user-centric adaptive cluster can be found.If the value is greater than the threshold,the network system will select adaptive communication;otherwise select the most use of excellent small base station to communicate with learning method.This novel network architecture can provide users with personalized network service,and enhance the peak rate and throughput performance for users.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(05):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(05):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(05):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(05):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(05):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(05):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(05):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(05):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(05):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(05):47.

更新日期/Last Update: 2017-07-07