[1]聂建豪,李士进. 基于图像识别的秸秆焚烧事件检测[J].计算机技术与发展,2017,27(05):69-72.
 NIE Jian-hao,LI Shi-jin. Detection of Straw Burning Event Based on Image Recognition[J].,2017,27(05):69-72.
点击复制

 基于图像识别的秸秆焚烧事件检测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年05期
页码:
69-72
栏目:
智能、算法、系统工程
出版日期:
2017-05-10

文章信息/Info

Title:
 Detection of Straw Burning Event Based on Image Recognition
文章编号:
1673-629X(2017)05-0069-04
作者:
 聂建豪李士进
 河海大学 计算机与信息学院
Author(s):
 NIE Jian-haoLI Shi-jin
关键词:
 颜色模型滑动窗口单一特征提取多特征融合
Keywords:
 color modelsliding windowsingle feature extractionmulti-feature fusion
分类号:
TP181
文献标志码:
A
摘要:
 针对传统火灾检测存在的对周围环境要求比较高,且研究对象多数属于室内或者商业设施等现象,提出了基于滑动窗口图像特征提取的多特征融合和SVM相结合的秸秆焚烧火灾检测算法.首先在YCbCr空间模型下使用Otsu(大津算法)对火焰图像进行前景检测,再对所检测到的前景使用颜色判别方法,得到候选火焰区域,然后使用滑动窗口在这些区域上进行移动,在每一个窗口内提取HOG特征、灰度共生矩阵特征、颜色矩特征,将这些特征分别送入SVM训练得到不同的分类器进行秸秆焚烧事件检测.最后根据投票方法将三种特征进行融合,最终检测出是否发生火灾.实验结果表明,该算法实现简单,识别率高,可达到86.67%.且由于算法基于火灾的静态特征,更能体现火焰的固有图像特征,与其他类型的火焰检测相比,适用性更强.
Abstract:
 The traditional fire detection system has higher requirements of the surrounding environment,and research objects belongs to indoor or commercial facilities mostly.In order to solve the problem,a fire detection algorithm based on multi-feature fusion of image feature extraction of sliding window and the SVM classifier is proposed.First,in the YCbCr color space model,Otsu is used to detect the foreground from the flame image and the foreground is inspected by the color feature to obtain the fire candidate regions.Then three kinds of flame features including HOG,gray level co-occurrence matrix and color moment are extracted by using the sliding widow moved on the fire candidate regions,which are put into the SVM classifier to classify the window whether there is a fire.The final result based on the method of voting is gained.The experimental results show that the algorithm is simple and has higher recognition rate,more than 86.67%.Because it is based on the static features of the fire,it shows inherent image characteristics of fire.Compared with other fire detection algorithms,it has wider application range.

相似文献/References:

[1]范保玲 王民 董颖娣.基于肤色检测技术的手势分割[J].计算机技术与发展,2008,(03):105.
 FAN Bao-ling,WANG Min,DONG Ying-di.Hand Gesture Segmentation Based on Skin Color Detection Technology[J].,2008,(05):105.
[2]王建卫.基于对比度增强的彩色图像边缘检测算法[J].计算机技术与发展,2014,24(02):79.
 WANG Jian-wei.An Edge Detection Algorithm of Color Image Based on Contrast Enhancement[J].,2014,24(05):79.
[3]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(05):1.
[4]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(05):5.
[5]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(05):13.
[6]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(05):21.
[7]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(05):25.
[8]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(05):29.
[9]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(05):34.
[10]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(05):38.

更新日期/Last Update: 2017-07-07