[1]李策,王保云,高浩. 基于自适应粒子群算法的特征选择[J].计算机技术与发展,2017,27(04):89-93.
 LI Ce,WANG Bao-yun,GAO Hao. Feature Selection Based on Adaptive Particle Swarm Optimization[J].,2017,27(04):89-93.
点击复制

 基于自适应粒子群算法的特征选择()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年04期
页码:
89-93
栏目:
智能、算法、系统工程
出版日期:
2017-04-10

文章信息/Info

Title:
 Feature Selection Based on Adaptive Particle Swarm Optimization
文章编号:
1673-629X(2017)04-0089-05
作者:
 李策王保云高浩
 南京邮电大学 自动化学院
Author(s):
 LI CeWANG Bao-yunGAO Hao
关键词:
 特征选择粒子群算法分类自适应封装
Keywords:
 feature selectionPSOclassificationadaptivewrapper
分类号:
TP391
文献标志码:
A
摘要:
 在模式分类问题中,数据往往存在不相关或冗余的特征,从而影响分类的准确性.特征选择的提出,很好地解决了这一问题.特征选择的关键在于利用最少的特征获得最佳的分类效果.为了达到这一目的,一种基于自适应粒子群的特征选择的理论被提出.相比于原始的粒子群算法,在初始过程中引入混沌模型增加其初始粒子的多样性,在更新机制中引入自适应因子增加其全局搜索能力.同时将特征数目引入到适应度函数中,在迭代前期通过惩罚因子调节分类准确率和特征数目对于适应度函数的影响,在迭代中后期惩罚因子恒定,使特征数目对于适应度函数的影响趋于稳定.自适应粒子群算法具有很好的全局收敛性,能够避免陷入局部最优,尤其适合高维数据的降维问题.大量的理论分析和仿真实验的结果表明,与其他粒子群算法(PSO)的特征选择结果相比,在数据特征数目各异的情况下,该算法具有更好的分类效果,同时表明了所提算法的可行性以及优越性.
Abstract:
 In pattern classification problems,there is often irrelevant or redundant features in data,thus affecting the accuracy of the classification.Feature selection is proposed to be a good solution to this problem.The key of feature selection is to use the least feature for the best classification results.In order to achieve this object,a theory based on adaptive particle swarm feature selection is presented.Compared to the original particle swarm optimization,chaos model is introduced in the initial process of increasing its diversity of primary particles,the introduction of adaptive factor to increase its global search capability in the update mechanism.At the same time the number of features will be introduced to the fitness function,in the early iterations adjustment classification accuracy and the number of features by penalizing factor for adapting to the impacts of the function,in the latter part of the penalty factor constant iteration,bringing the number of features of the fitness function tends to affect stable.Adaptive particle swarm algorithm has good global convergence and can avoid falling into local optimum,especially for lower-dimensional problem of high dimensional data.A large number of theoretical analysis and simulation results show that compared with other PSO feature of the election results,in the case where the number of different data characteristics,this algorithm has better classification results.Also it shows that the proposed algorithm is feasible and superior.

相似文献/References:

[1]刘利 何先平 袁文亮.股票趋势预测中Wrapper方法的研究与应用[J].计算机技术与发展,2010,(01):209.
 LIU Li,HE Xian-ping,YUAN Wen-liang.Research and Application of Wrapper Approach to Stock Trend Prediction[J].,2010,(04):209.
[2]黄炜 黄志华.一种基于遗传算法和SVM的特征选择[J].计算机技术与发展,2010,(06):21.
 HUANG Wei,HUANG Zhi-hua.Feature Selection Based on Genetic Algorithm and SVM[J].,2010,(04):21.
[3]张家柏 王小玲.基于聚类和二进制PSO的特征选择[J].计算机技术与发展,2010,(06):25.
 ZHANG Jia-bai,WANG Xiao-ling.A Novel Algorithm Based on K-Means Clustering and Binary Particle Swarm Optimization[J].,2010,(04):25.
[4]冯甲策 叶明 王惠文.基于Gram—Schmidt过程的支持向量机降维方法[J].计算机技术与发展,2009,(11):7.
 FENG Jia-ce,YE Ming,WANG Hui-wen.Dimension Reduction Method of Support Vector Machine Based on Gram- Schmidt Process[J].,2009,(04):7.
[5]林伟 柳荣其 徐熙.邮件过滤中一种改进的特征选择方法研究[J].计算机技术与发展,2009,(01):84.
 LIN Wei,LIU Rong-qi,XU Xi.Improvement of Feature Selection Algorithm in Spam Filtering[J].,2009,(04):84.
[6]刘毅 张月琳.基于Agent的邮件过滤与个性化分类系统设计[J].计算机技术与发展,2009,(02):66.
 LIU Yi,ZHANG Yue-lin.Design of a Mail Filter and Personalized Classification System Based on Agent[J].,2009,(04):66.
[7]陈素萍 谢丽聪.一种文本特征选择方法的研究[J].计算机技术与发展,2009,(02):112.
 CHEN Su-ping,XIE Li-cong.Research on Document Feature Selection[J].,2009,(04):112.
[8]段震 王倩倩 张燕平 张铃.覆盖算法下文本分类特征选择的研究[J].计算机技术与发展,2008,(11):29.
 DUAN Zhen,WANG Qian-qian,ZHANG Yan-ping,et al.Study on Feature Selection of Text Classification in Cross Cover Algorithm[J].,2008,(04):29.
[9]王希雷.基于Rough集理论的车牌汉字特征提取[J].计算机技术与发展,2007,(06):26.
 WANG Xi-lei.Car Plate Chinese Character Feature Extraction Based on Rough Set Theory[J].,2007,(04):26.
[10]董梅 胡学钢.基于多特征选择的中文文本分类[J].计算机技术与发展,2007,(07):117.
 DONG Mei,HU Xue-gang.Text Categorization Based on Multiple Features Selection[J].,2007,(04):117.
[11]姚明海[],王娜[],李劲松[]. 一种新的基于特征选择的虹膜识别方法[J].计算机技术与发展,2014,24(12):96.
 YAO Ming-hai[],WANG Na[],LI Jin-song[]. A Novel Iris Recognition Method Based on Feature Selection[J].,2014,24(04):96.
[12]王园萍,殷洪友. 基于矩阵分数范数的人脸识别方法[J].计算机技术与发展,2015,25(04):22.
 WANG Yuan-ping,YIN Hong-you. Face Recognition Method Based on Fractional Matrix Norm[J].,2015,25(04):22.
[13]梁天超[][],荆晓远[],姚永芳[],等. 基于加权RFE-Bayes方法的软件缺陷预测模型[J].计算机技术与发展,2015,25(10):131.
 LIANG Tian-chao[][],JING Xiao-yuan[],YAO Yong-fang[],et al. A Prediction Model for Software Defect Based on Weighted RFE-Bayes[J].,2015,25(04):131.
[14]李春生,邸京华,李少龙,等. 时序化生产预警有效影响因子的获取方法研究[J].计算机技术与发展,2016,26(07):122.
 LI Chun-sheng,DI Jing-hua,LI Shao-long,et al. Research on Acquisition Method of Effective Impact Factors in Production Early Warning by Time Series[J].,2016,26(04):122.
[15]周丰,王未央. 基于最小最大模块化集成特征选择的改进[J].计算机技术与发展,2016,26(09):149.
 ZHOU Feng,WANG Wei-yang. Improvement of Multi-classification Integrated Selection Based on Min-Max-Module[J].,2016,26(04):149.
[16]张淑雯,刘效武,孙雪岩. 基于多源融合的网络安全态势层次感知[J].计算机技术与发展,2016,26(10):77.
 ZHANG Shu-wen,LIU Xiao-wu,SUN Xue-yan. Hierarchical Awareness of Network Security Situation Based on Multi-source Fusion [J].,2016,26(04):77.

更新日期/Last Update: 2017-06-19