[1]赵礼峰,纪亚宝. 最大流最小截问题的遗传算法研究[J].计算机技术与发展,2017,27(04):69-72.
 ZHAO Li-feng,JI Ya-bao. Investigation on Genetic Algorithm for Maximum FlowMinimum Cut Problem[J].,2017,27(04):69-72.
点击复制

 最大流最小截问题的遗传算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年04期
页码:
69-72
栏目:
智能、算法、系统工程
出版日期:
2017-04-10

文章信息/Info

Title:
 Investigation on Genetic Algorithm for Maximum FlowMinimum Cut Problem
文章编号:
1673-629X(2017)04-0069-04
作者:
 赵礼峰纪亚宝
 南京邮电大学 理学院
Author(s):
 ZHAO Li-fengJI Ya-bao
关键词:
 最大流最小截遗传算法选择交叉变异
Keywords:
 maximum flow minimum cutgenetic algorithmselectioncrossingmutation
分类号:
TP301.6
文献标志码:
A
摘要:
 遗传算法在众多领域中均有重要应用,运用遗传算法同样可以求解最大流最小截问题.遗传算法解决最大流最小截问题可以有效地解决对于网络规模增长,传统算法计算量呈指数级增长的局限性.根据最大流最小截问题的相关理论和遗传算法的原理,设计出最大流最小截问题的遗传算法,根据最大流最小截问题的定义设计了遗传算法中的编码方法、解码方法以及群体初始化方法,形成算法的初始个体.设计适应度函数计算个体适应度,根据个体适应度设计算法的选择算子选择个体,设计了交叉算子和变异算子,将选择的个体进行交叉变异产生新的个体,并且设计了具体的算法步骤.通过仿真实验发现,对于小型网络和大型网络,该算法均能稳定求解,并且随着算法迭代次数的增加,算法求得最优解就越接近于真实解.
Abstract:
 Genetic algorithm has important applications in many fields,so the problems of maximum flow minimum cut also can be solved by it.Genetic algorithm solving the maximum flow minimum cut problem can be a solution for the exponential growth limitations of calculating amount for traditional algorithms with the increasing of the network size.Based on theory of maximum flow minimum cut problem and genetic algorithm principle,a genetic algorithm is designed for maximum flow minimum cut problem.According to the definition of maximum flow minimum cut,the encoding method,decoding method and a group initialization method of genetic algorithm are designed to form the initial individual of algorithm.The fitness function is designed to calculate individual fitness by which the selection operator is designed to select individual,and design of crossover and mutation operator,the selected individuals are carried out crossover and mutation to produce new individuals,introducing specific algorithm steps.Simulation results show that for small and large networks,this algorithm is stable,and with increasing number of iterations,it can obtain the optimal solution much closer to the true solution.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(04):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(04):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(04):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(04):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(04):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(04):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(04):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(04):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(04):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(04):47.

更新日期/Last Update: 2017-06-16