[1]陈晓思,杭燚灵. 小样本能量检测中的双门限协作频谱感知[J].计算机技术与发展,2017,27(03):193-196.
 CHEN Xiao-si,HANG Yi-ling. Double-threshold Cooperative Spectrum Sensing in Small Sample Energy Detection[J].,2017,27(03):193-196.
点击复制

 小样本能量检测中的双门限协作频谱感知()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年03期
页码:
193-196
栏目:
应用开发研究
出版日期:
2017-03-10

文章信息/Info

Title:
 Double-threshold Cooperative Spectrum Sensing in Small Sample Energy Detection
文章编号:
1673-629X(2017)03-0193-04
作者:
 陈晓思杭燚灵
 南京邮电大学 通信与信息工程学院
Author(s):
 CHEN Xiao-siHANG Yi-ling
关键词:
 协作频谱感知小样本能量检测双门限碰撞概率
Keywords:
 cooperative spectrum sensingsmall sampleenergy detectiondouble thresholdcollision probability
分类号:
TP31
文献标志码:
A
摘要:
 为了克服传统的能量检测方法需要大量的采样样本,且在低信噪比时检测性能不佳的问题,提出了一种小样本能量检测中的双门限协作频谱感知方法.该方法采用双门限有效减少了在低信噪比的情况下认知用户对主用户的干扰,利用多维高斯近似处理检测结果实现小样本能量检测,并且在融合中心使用硬判决中最适合实际应用的"大多数投票"原则做出最终判决.仿真结果表明,与传统能量检测、小样本能量检测双门限以及小样本能量检测单门限协作频谱感知等方法相比,小样本能量检测中的双门限协作频谱感知算法具有在小样本和低信噪比情况下也可以有效减少频谱感知过程中认知用户对主用户的干扰程度,降低能量检测的漏检概率,提高系统的检测性能等优点.
Abstract:
 In order to overcome the drawbacks of demanding large quantity of samples for the conventional energy detection method and poor detection performance in the low SNR,a double-threshold cooperative spectrum sensing way is proposed in small sample energy de-tection. It adopts double-threshold to effectively reduce the interference of cognitive users to primary users in the low SNR,making the use of the cube-of-Gaussian approximation approach to implement small sample energy detection. In the center fusion, the proposed method takes a majority-voting rule which is the most suitable for practical using in hard decisions for the final decision. The simulation results show that compared to the conventional energy detection method,double-threshold energy detection method in small sample and single-threshold cooperative spectrum sensing method in small sample energy detection,the double-threshold cooperative spectrum sens-ing method in small sample energy detection can effectively reduce the interference of cognitive users to primary users in the condition of small sample size and low SNR,which can greatly reduce the miss detection probability of energy detection and improve the detection performance in the system.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(03):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(03):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(03):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(03):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(03):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(03):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(03):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(03):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(03):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(03):47.
[11]刘敏,岳文静,蒲昱,等. 提高认知多跳网络的协作频谱感知方法[J].计算机技术与发展,2016,26(01):171.
 LIU Min,YUE Wen-jing,PU Yu,et al. A Method of Cooperative Spectrum Sensing of Enhancement in Cognitive Radio Multi-hop Networks[J].,2016,26(03):171.
[12]孙飞.胡钧. 基于DS证据理论的双门限协作频谱感知新方法[J].计算机技术与发展,2016,26(04):195.
 SUN Fei,HU Jun. mproved Cooperative Spectrum Sensing Scheme of Double Threshold Decision Based on Dempster-Shafer Theory[J].,2016,26(03):195.
[13]李莎[,戴建新[],程崇虎[],等. 模拟主用户攻击下的协作频谱感知[J].计算机技术与发展,2017,27(02):72.
 LI Sha[],DAI Jian-xin[],CHENG Chong-hu[],et al. Cooperative Spectrum Sensing in Presence of Primary User Emulation Attack[J].,2017,27(03):72.
[14]董守超[],张晶[][]. 基于能量效率的协作频谱感知时间优化[J].计算机技术与发展,2017,27(03):176.
 DONG Shou-chao[],ZHANG Jing[][]. Optimization of Cooperative Spectrum Sensing Time Based on Energy Efficiency[J].,2017,27(03):176.
[15]李莎[],戴建新[],程崇虎[],等. 模拟主用户攻击下协作频谱感知最佳融合准则[J].计算机技术与发展,2017,27(04):126.
 LI Sha[],DAI Jian-xin[],CHENG Chong-hu[],et al. Optimal Fusion Rule of Cooperative Spectrum Sensing in Presence ofPrimary User Emulation Attack[J].,2017,27(03):126.
[16]高卉[],冯友宏[][],王晓雨[]. 认知无线传感网络中吞吐量能耗均衡研究[J].计算机技术与发展,2017,27(10):130.
 GAO Hui[],FENG You-hong[][],WANG Xiao-yu[]. Research on Tradeoff of Energy Consumption and Throughput in Cognitive Wireless Sensor Networks[J].,2017,27(03):130.

更新日期/Last Update: 2017-05-18