[1]秦军[],董倩倩[],郝天曙[]. 基于蚁群模拟退火的云任务调度算法改进[J].计算机技术与发展,2017,27(03):117-121.
 QIN Jun[],DONG Qian-qian[],HAO Tian-shu[]. Improvement of Algorithm for Cloud Task Scheduling Based on Ant Colony Optimization and Simulated Annealing[J].,2017,27(03):117-121.
点击复制

 基于蚁群模拟退火的云任务调度算法改进()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年03期
页码:
117-121
栏目:
智能、算法、系统工程
出版日期:
2017-03-10

文章信息/Info

Title:
 Improvement of Algorithm for Cloud Task Scheduling Based on Ant Colony Optimization and Simulated Annealing
文章编号:
1673-629X(2017)03-0117-05
作者:
 秦军[1]董倩倩[2]郝天曙[2]
 1.南京邮电大学 教育科学与技术学院;2.南京邮电大学 计算机学院
Author(s):
 QIN Jun[1]DONG Qian-qian[2]HAO Tian-shu[2]
关键词:
 任务调度云计算蚁群算法模拟退火算法
Keywords:
 task schedulingcloud computingACOSimulated Annealing
分类号:
TP301.6
文献标志码:
A
摘要:
 随着云计算的快速发展,如何高效地进行云任务调度逐渐成为云计算研究的重点.任务调度问题属于NP优化问题,许多超启发式算法被应用到任务调度问题.针对蚁群算法在任务调度中存在收敛速度慢、局部搜索能力差和易于陷入局部最优的问题,将蚁群算法和模拟退火算法相结合,提出了蚁群模拟退火算法,拟解决云计算中的任务调度问题.在该算法中,以减少任务的完成时间和保证资源负载均衡为目标,根据蚁群算法构造局部最优解,利用模拟退火算法较强的局部搜索能力,将局部最优解作为模拟退火算法的初始解进行局部搜索并以一定的概率接受当前搜索结果,从而避免算法陷入局部最优.仿真结果表明,蚁群模拟退火算法的性能优于先来先服务(First Come First Served,FCFS)和标准蚁群优化(Ant Colony Optimization,ACO)算法.
Abstract:
 With the rapid development of cloud computing,how to carry on task scheduling effectively is crucial in the research of cloud computing. Cloud task scheduling belongs to a NP-hard optimization problem,and many meta-heuristic algorithms have been proposed to solve it. ACO algorithm in task scheduling still has many shortcomings such as slow convergence speed,poor ability of local search and falling into local optimum easily. Therefore,a new algorithm-ACOSA is presented to solve task scheduling problem. In this algorithm,re-ducing task completion time and ensuring resource’ s load balance as the goal,according to the local ant colony algorithm the optimal so-lution is constructed,and the strong local search capability of simulated annealing algorithm is applied to make the local optimal solutions as the initial solutions of simulated annealing algorithm and accept the results of current search to a certain probability in order to avoid falling into the local optimal. Simulation results show that ACOSA is superior to First Come First Served ( FCFS) and Ant Colony Opti-mization ( ACO) by reducing make span and achieving load balance.

相似文献/References:

[1]易侃 王汝传.一种基于SOA的网格任务调度框架[J].计算机技术与发展,2010,(04):155.
 YI Kan,WANG Ru-chuan.A Task Scheduling Framework Based on SOA in Grid Computing[J].,2010,(03):155.
[2]郭创 余谅.网格任务调度算法的研究[J].计算机技术与发展,2009,(06):5.
 GUO Chuang,YU Liang.Research on Algorithm for Tasks Scheduling in Grid[J].,2009,(03):5.
[3]张辉宜 赵海军 周秀丽.基于Pfair的分布式实时调度策略Linux下实现[J].计算机技术与发展,2008,(02):31.
 ZHANG Hui-yi,ZHAO Hai-jun,ZHOU Xiu-li.Based on Pfair Implementing Distributed Real- Time Scheduling in Linux Kernel[J].,2008,(03):31.
[4]樊晓香.任务调度问题机制设计[J].计算机技术与发展,2008,(07):119.
 FAN Xiao-xiang.Research of Task Scheduling in Mechanism Design[J].,2008,(03):119.
[5]赵健.基于GridSim的A-MM调度算法模拟[J].计算机技术与发展,2008,(10):96.
 ZHAO Jian.A- MM Algorithm Simulation Based on GridSim[J].,2008,(03):96.
[6]韩咚 陈波.基于时间Petri网的多处理机的调度算法[J].计算机技术与发展,2007,(06):15.
 HAN Dong,CHEN Bo.Algorithm of Multiprocessor Scheduling Based on Time Petri Nets[J].,2007,(03):15.
[7]张云锋 李胜磊 王炳波 华庆一[] 郝克刚[].基于Web的网格入口软件研究与实现[J].计算机技术与发展,2007,(07):53.
 ZHANG Yun-feng,LI Sheng-lei,WANG Bing-bo,et al.Research and Implementation of Web- Based Grid Portal[J].,2007,(03):53.
[8]聂雄.基于μClinux的嵌入式系统任务管理的研究[J].计算机技术与发展,2007,(04):158.
 NIE Xiong.Study of Embedded System Task Management on μClinux[J].,2007,(03):158.
[9]吕桦 钟诚 李智.一种基于任务复制方法的网格调度算法[J].计算机技术与发展,2006,(08):66.
 LU Hua,ZHONG Chenga,LI Zhi.A New Grid Scheduling Algorithm Based on Task Replication[J].,2006,(03):66.
[10]傅明 刘凯雄 肖静.一种用于网格的启发性智能调度策略[J].计算机技术与发展,2006,(11):119.
 FU Ming,LIU Kai-xiong,XIAO Jing.A Strategy of Heuristic Intelligent Scheduling Applied in Grid[J].,2006,(03):119.
[11]谭文安[][],查安民[],陈森博[]. 优化粒子群的云计算任务调度算法[J].计算机技术与发展,2016,26(07):6.
 TAN Wen-an[]],ZHA An-min[],CHEN Sen-bo[]. Task Scheduling Algorithm of Cloud Computing Based on Particle Swarm Optimization [J].,2016,26(03):6.
[12]赵科伟,洪龙,周宁宁. 基于QoS分类的任务调度算法研究[J].计算机技术与发展,2016,26(07):65.
 ZHAO Ke-wei,HONG Long,ZHOU Ning-ning. Research on Task Scheduling Algorithm Based on QoS Classification[J].,2016,26(03):65.
[13]查安民[],谭文安[][]. 融合粒子群与蚁群的云计算任务调度算法[J].计算机技术与发展,2016,26(08):24.
 ZHA An-min[],TAN Wen-an[][]. A Task Scheduling Algorithm of Cloud Computing Merging Particle Swarm Optimization and Ant Colony Optimization[J].,2016,26(03):24.
[14]张晓丽. 自适应CPSO算法在云计算任务调度中的应用[J].计算机技术与发展,2016,26(08):161.
 ZHANG Xiao-li. Application of Self-adaptive Chaos Particle Swarm Optimization in Task Scheduling for Cloud Computing[J].,2016,26(03):161.
[15]胡艳华[],唐新来[][]. 基于改进遗传算法的云计算任务调度算法[J].计算机技术与发展,2016,26(10):137.
 HU Yan-hua[],TANG Xin-lai[][]. A Task Scheduling Algorithm Based on Improved Genetic Algorithm in Cloud Computing Environment[J].,2016,26(03):137.
[16]朱丽玲,杨智应. 基于VOO方法的云计算平台多目标任务调度算法[J].计算机技术与发展,2017,27(01):11.
 ZHU Li-ling,YANG Zhi-ying. A Multi-objective Scheduling Algorithm of Many Tasks in Cloud Platforms Based on Method of VOO[J].,2017,27(03):11.
[17]李慧,雷丽晖. 云计算环境下基于马氏距离的任务调度策略研究[J].计算机技术与发展,2017,27(01):53.
 LI Hui,LEI Li-hui. Research on Task Scheduling Strategy in Cloud Computing Based on Mahalanobis Distance[J].,2017,27(03):53.
[18]刘春燕[],杨巍巍[]. 云计算基于遗传粒子群算法的多目标任务调度[J].计算机技术与发展,2017,27(02):56.
 LIU Chun-yan[],YANG Wei-wei[]. A Multi-objective Task Scheduling Based on Genetic and Particle Swarm Optimization Algorithm for Cloud Computing[J].,2017,27(03):56.
[19]秦军[],冯亮亮[],孙蒙[]. 基于异构Hadoop集群的负载均衡策略研究[J].计算机技术与发展,2017,27(06):110.
 QIN Jun[],FENG Liang-liang[],SUN Meng[]. Research on Load Balancing Strategy with Heterogeneous Hadoop Clustering[J].,2017,27(03):110.
[20]秦军[],孙蒙[],冯亮亮[]. 一种面向绿色云计算的任务调度算法[J].计算机技术与发展,2017,27(08):92.
 QIN Jun[],SUN Meng[],FENG Liang-liang[]. A Task Scheduling Algorithm for Green Cloud Computing[J].,2017,27(03):92.

更新日期/Last Update: 2017-05-18