[1]杜艾芊,赵海涛,刘南杰. 车载通信中基于Q学习的信道接入技术研究[J].计算机技术与发展,2017,27(03):85-90.
 DU Ai-qian,ZHAO Hai-tao,LIU Nan-jie. Research on Technology of Channel Access Based on Q-Learning Algorithm for Vehicular Communication[J].,2017,27(03):85-90.
点击复制

 车载通信中基于Q学习的信道接入技术研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年03期
页码:
85-90
栏目:
智能、算法、系统工程
出版日期:
2017-03-10

文章信息/Info

Title:
 Research on Technology of Channel Access Based on Q-Learning Algorithm for Vehicular Communication
文章编号:
1673-629X(2017)03-0085-06
作者:
 杜艾芊赵海涛刘南杰
南京邮电大学 通信与信息工程学院;南京邮电大学 网络基因工程研究所
Author(s):
 DU Ai-qian;ZHAO Hai-tao;LIU Nan-jie
关键词:
 车载网络BEB算法竞争窗口Q学习算法分布式协调功能
Keywords:
 vehicular networkBEB algorithmcontention windowQ-Learning algorithmDCF
分类号:
TP301
文献标志码:
A
摘要:
 针对基于IEEE 802.11p协议的车载网络MAC层DCF(分布式协调功能)信道接入方法存在数据包接收率低、时延高、可扩展性差等问题,提出一种基于Q学习的CW动态调整算法-QL-CWmin算法.区别于现有的BEB算法,通过利用Q学习,网络节点(Agent)能够不断地与周围环境进行交互学习,根据学习结果动态地调整竞争窗口(CW),使节点总能以最佳的CW(从周围环境中获得奖赏值最大时所选的CW大小)接入信道,以减少数据帧碰撞、降低端到端传输时延.仿真结果表明,采用QL-CWmin算法的通信节点能快速适应车联网的未知环境,数据包接收率和数据包传输时延得到了有效改善,同时该算法能为节点接入信道提供更高的公平性,适用于各种不同负载程度的网络环境.
Abstract:
 A Q-Learning based back-off algorithm is proposed because the traditional DCF approach used for IEEE 802. 11p MAC pro-tocol to access the channel has some problems of the low packet delivery rate,high delay and the poor scalability in VANETs. The pro-posed algorithm,which is quite different from the traditional BEB algorithm,is adopted by the nodes ( Agents) to interact with surround-ings continuously and learn from each other. The vehicle nodes adjust the size of CW ( Contention Window) dynamically according to the results learned from the surroundings so that the nodes can access the channel with the optimal CW eventually minimizing the packet col-lisions and end-to-end delay. The simulation results show that the communication nodes using the proposed algorithm can adapt to the unknown vehicular environment rapidly,and simultaneously the high packet delivery ratio,low end-to-end delay and high fairness can be achieved for vehicular network with various level load.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(03):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(03):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(03):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(03):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(03):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(03):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(03):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(03):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(03):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(03):47.
[11]龚丁海. 车载网络GPSR路由算法的改进[J].计算机技术与发展,2017,27(04):104.
 GONG Ding-hai. Improved GPSR Routing Algorithm for VANETS[J].,2017,27(03):104.

更新日期/Last Update: 2017-05-12