[1]程艳云,周鹏. 动态分配聚类中心的改进K均值聚类算法[J].计算机技术与发展,2017,27(02):33-36.
 CHENG Yan-yun,ZHOU Peng.Improved K-means Clustering Algorithm for Dynamic Allocation Cluster Center[J].,2017,27(02):33-36.
点击复制

 动态分配聚类中心的改进K均值聚类算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年02期
页码:
33-36
栏目:
智能、算法、系统工程
出版日期:
2017-02-10

文章信息/Info

Title:
Improved K-means Clustering Algorithm for Dynamic Allocation Cluster Center
文章编号:
1673-629X(2017)02-0033-04
作者:
 程艳云;周鹏
 南京邮电大学 自动化学院
Author(s):
CHENG Yan-yunZHOU Peng
关键词:
 KMEANS算法动态聚类中心相对距离高密度点
Keywords:
 KMEANS algorithmdynamic clustering centerrelative distancehigh density point
分类号:
TP181
文献标志码:
A
摘要:
 K均值算法(KMEANS)是一种应用广泛的经典聚类算法,但其有两个缺陷,即对初始聚类中心敏感及需要人工确定聚类的个数,因而聚类结果的准确率较低.针对K均值聚类算法现存的两个缺陷,为提高算法的精确性与稳定性,以及改善聚类性能,提出了一种改进的K均值算法.该算法通过定义的平均类间最大相似度指标值来确定最佳的K值,将所有数据点中密度较高的点作为备选聚类中心,将备选点中密度最大的两个点作为聚类中心进行初步聚类计算并更新当前聚类中心.当计算得到的平均类间最大相似度现值小于前次计算值,则依据相对距离原则从备选点中动态选择下一个聚类中心;否则,将当前的聚类中心作为最佳初始聚类中心进行K均值聚类计算.实验结果表明,改进后的算法不仅能够有效地提高聚类计算的精确性与稳定性,而且还能缩短聚类计算时间,具有一定的技术优势和应用前景.
Abstract:
 KMEANS algorithm is a classical clustering algorithm with popular application.However,there are two defects of it known as sensitivity to initial cluster centers and clustering number needs to determine.Thus,the accuracy of clustering results is rather low.In order to improve its accuracy and stability and ameliorate its clustering performance,an improved K-means clustering algorithm has been presented and acquired.Optimum K value is determined for the improved algorithm by defining average maximum similarity index between classes,and then two points with highest density are selected as cluster centers for initial KMEANS clustering and updating the current cluster center after the ones with higher density have been taken as candidate clustering centers.If the current value of average maximum similarity index between classes is less than the former,then next cluster center is dynamically chosen from candidate cluster centers by principle of reladve distance.Otherwise,the current center is taken as optimum cluster center for KMEANS clustering.Results of experiments show that the improved algorithm can effectively boost clustering accuracy and stability and shorten the clustering time.It also implies both definite technical advantages and perspective for application of the improved algorithm.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(02):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(02):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(02):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(02):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(02):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(02):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(02):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(02):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(02):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(02):47.

更新日期/Last Update: 2017-05-11