[1]武频[],王庆[],朱永华[],等. 一种改进的基于SURF的视频帧间匹配方法[J].计算机技术与发展,2017,27(02):20-24.
 WU Pin[],WANG Qing[],ZHU Yong-hua[],et al. An Improved Matching Method in Video Frames Based on SURF[J].,2017,27(02):20-24.
点击复制

 一种改进的基于SURF的视频帧间匹配方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年02期
页码:
20-24
栏目:
智能、算法、系统工程
出版日期:
2017-02-10

文章信息/Info

Title:
 An Improved Matching Method in Video Frames Based on SURF
文章编号:
1673-629X(2017)02-0020-05
作者:
 武频[1]王庆[1]朱永华[1]高洪皓[2]
 1.上海大学计算机工程与科学学院,;2.上海大学计算中心
Author(s):
 WU Pin[1]WANG Qing[1]ZHU Yong-hua[1]GAO Hong-hao[2]
关键词:
 SURF视频连续帧最近邻匹配随机抽样一致性
Keywords:
 SURFcontinuous video framesnearest neighbormatchingRANSAC
分类号:
TP301.6
文献标志码:
A
摘要:
 针对视频连续帧间匹配不准确、错误率高、匹配速度慢的问题,提出了一种改进的基于SURF(Speeded Up Robust Feature)特征点的匹配方法.按照SURF算法进行特征点检测和描述;对视频连续帧利用改进的最近邻与次近邻的比的方法进行双向匹配,在匹配时仅在以相应位置为中心的邻域内寻找最近邻点和次近邻点,根据最近距离与次近距离的比值与预先设定阈值的比较结果确定是否接受这一匹配点对;用RANSAC(Random Sample Consensus)方法建立变换矩阵模型剔除错误匹配点,得到精确匹配的特征点对,完成匹配过程.在经典的视频数据集上进行实验,实验结果表明该方法不仅提高了视频连续帧间匹配的正确率,同时使匹配时间相对缩短了一半左右,显著提高了匹配效率,证明了算法的有效性.
Abstract:
 With the problem of inaccurate matching,high error rate and low speed in video frames,an improved matching method based on SURF (Speeded Up Robust Feature) is presented.The SURF features are detected and described.The improved method of ratio between the nearest and the next nearest neighbor is used for bidirectional matching.When matching,the nearest and next nearest neighbor points are searched only in the neighborhood of the corresponding points and the two matching points are accepted according to the comparison results between the distance ratio and the present threshold.The RANSAC method is applied to build the transformation matrix model to removing the error matches and get the exact match,completing the match process.The experiment is carried out on the classic video dataset,and the result shows that the method can improve the matching accuracy,and the matching time is relatively shortened by about half,significantly improving the matching efficiency and verifying the effectiveness of the algorithm.

相似文献/References:

[1]闵华清 黄欣欣 罗荣华.基于激光和视觉信息的机器人目标跟踪方法[J].计算机技术与发展,2010,(04):113.
 MIN Hua-qing,HUANG Xin-xin,LUO Rong-hua.Robot Target Tracking Approach Based on Laser and Vision Information[J].,2010,(02):113.
[2]杨云涛 冯莹 曹毓 陈运锦.基于SURF的序列图像快速拼接方法[J].计算机技术与发展,2011,(03):6.
 YANG Yun-tao,FENG Ying,CAO Yu,et al.Fast Method for Image Sequences Mosaic Based on SURF[J].,2011,(02):6.
[3]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(02):1.
[4]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(02):5.
[5]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(02):13.
[6]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(02):21.
[7]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(02):25.
[8]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(02):29.
[9]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(02):34.
[10]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(02):38.
[11]刘有科[],高珏[],谭松[],等. 一种基于CUDA的快速宽视频拼接的方法[J].计算机技术与发展,2015,25(01):15.
 LIU You-ke[],GAO Jue[],TAN Song[],et al. A Fast Wide Video Stitching Method Based on CUDA[J].,2015,25(02):15.
[12]雷飞,王文学,王雪丽,等. 基于改进SURF的实时视频拼接方法[J].计算机技术与发展,2015,25(03):32.
 LEI Fei,WANG Wen-xue,WANG Xue-li,et al. Real-time Video Stitching Method Based on Improved SURF[J].,2015,25(02):32.

更新日期/Last Update: 2017-05-11