[1]李燕萍,林乐,陶定元. 基于GMM统计特性的电子伪装语音鉴定研究[J].计算机技术与发展,2017,27(01):103-106.
 LI Yan-ping,LIN Le,TAO Ding-yuan. Research on Identification of Electronic Disguised Voice Based on GMM Statistical Parameters[J].,2017,27(01):103-106.
点击复制

 基于GMM统计特性的电子伪装语音鉴定研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年01期
页码:
103-106
栏目:
安全与防范
出版日期:
2017-01-10

文章信息/Info

Title:
 Research on Identification of Electronic Disguised Voice Based on GMM Statistical Parameters
文章编号:
1673-629X(2017)01-0103-04
作者:
 李燕萍林乐陶定元
 南京邮电大学 通信与信息工程学院
Author(s):
 LI Yan-pingLIN LeTAO Ding-yuan
关键词:
 变声软件电子伪装语音梅尔倒谱系数支持向量机高斯混合模型
Keywords:
 voice changerelectronic disguised voiceMFCCSVMGMM
分类号:
TP31
文献标志码:
A
摘要:
 数字多媒体技术的发展使多媒体信息得到广泛使用和传播,给人类的信息交流带来极大的便利。随着语音相关技术的发展与逐渐成熟,对于语音信号处理的应用也越来越广泛。数字多媒体信息易于修改的特点,使其面临着恶意篡改带来的严重危机。近年来,手机应用软件市场上出现了大量的变声软件,例如微信变声器、超级变声器等等,类似变声器的下载量动辄上百万,这些应用软件可使说话人的声音发生巨大的改变,致使一般的听话人无法辨认发音人的身份、年龄乃至性别,即使是对话者非常熟悉的人也很难识别出说话者的身份。提出了一种鉴定电子伪装语音的方法,通过GMM模型建模,将其均值矢量构成组合特征,然后基于SVM分类器进行训练和鉴别。通过对比语音伪装前后的梅尔倒谱特征参数的统计特性变化,对特征参数的变化规律进行了分析研究。实验结果表明,提出的方法对电子伪装语音的鉴定正确率达到90%。
Abstract:
 With the development of digital multimedia technology,digital information has been widely used and spread,which brings great convenience to human communication. Speech related technology gradually becomes mature,and its application is more and more exten-sive. This kind of information is easy to be modified,so that it is facing a serious crisis of malicious tampering. In recent years,a large number of software appear in mobile phone application store,such as Wechat Voice Changer,Super Voice Changer and so on,which can change the speaker’ s voice a lot. As a result,the listener cannot identify the speaker’ s age and sex,even they are familiar. A novel algo-rithm for identification of electronic disguised voice is put forward based on supervector combined by mean vectors of Gaussian mixture model and SVM classifier for training and identification. By comparing the statistical change of MFCC between nature and disguised voice,the variation of voice parameters is studied. Experimental results show that the identification rate can reach 90%.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(01):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(01):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(01):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(01):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(01):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(01):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(01):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(01):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(01):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(01):47.

更新日期/Last Update: 2017-04-01