[1]尧潞阳,解凯,李桐. 基于块旋转和清晰度的图像超分辨率重建算法[J].计算机技术与发展,2017,27(01):70-74.
 YAO Lu-yang,XIE Kai,LI Tong. An Image Super Resolution Reconstruction Algorithm Based on Patch Rotation and Sharpness[J].,2017,27(01):70-74.
点击复制

 基于块旋转和清晰度的图像超分辨率重建算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年01期
页码:
70-74
栏目:
智能、算法、系统工程
出版日期:
2017-01-10

文章信息/Info

Title:
 An Image Super Resolution Reconstruction Algorithm Based on Patch Rotation and Sharpness
文章编号:
1673-629X(2017)01-0070-05
作者:
 尧潞阳解凯李桐
 北京印刷学院 信息工程学院
Author(s):
 YAO Lu-yangXIE KaiLI Tong
关键词:
 超分辨率多尺度自相似性块旋转清晰度迭代反投影局部约束
Keywords:
 super resolutionmulti-scale self-similaritypatch rotationsharpness measureiterative back projection local constraint
分类号:
TP301.6
文献标志码:
A
摘要:
 针对传统基于学习的超分辨率重建算法训练时间过长,且对训练库依赖性大的不足,提出一种结合块旋转和清晰度的超分辨率重建方法。该方法引入了一种新的分类机制。为增加训练样本块的多样性,但又不增加计算复杂度,将样本块进行一定角度的旋转,然后引入块清晰度( Sharpness Measure,SM)对训练样本进行分类。对于块清晰度较高的纹理、角以及边缘块,利用分类好的对应样本库进行自相似性重建,而清晰度较低的块,则直接使用插值放大进行重建。在搜索匹配过程中改用Fast Library for Approximate Nearest Neighbors (FLANN)替代传统的Approximate Nearest Neighbors (ANN)搜索,提高了重建效率。最终利用迭代反投影算法和局部约束进行优化。实验结果表明,该算法既可以较大幅度减少计算的复杂度,也能够获得较好的视觉效果。
Abstract:
 To address the shortcomings of long-time training and relying on the additional training databases in conventional example-based super-resolution algorithm,a super-resolution image reconstruction algorithm based on patch rotation and sharpness is proposed, which introduces a new classification mechanism. To increase the diversity of training sample patches but not the computational complexi-ty,they are rotated by a certain angle and then introduced the patch Sharpness Measure ( SM) to classify the training samples. For patches of high SM,such as textures,corners and edges,the self-similarity reconstruction is carried on by classified samples. For patches of low SM,the interpolation is used directly to enlarge the image for reconstruction. During the searching and matching process,the Fast Library for Approximate Nearest Neighbors (FLANN) to replace the traditional Approximate Nearest Neighbors (ANN) increases the recon-struction efficiency. Finally,iterative back projection and local constraint are used for optimization. Experimental results validate that the algorithm not only can reduce the computational complexity effectively but also achieve better visual effects.

相似文献/References:

[1]李磊 周鸣争.基于MAP技术的图像类推超分辨重建方法[J].计算机技术与发展,2009,(01):77.
 LI Lei,ZHOU Ming-zheng.MAP - Based Image - Analogies Super - Resolution Reconstruction[J].,2009,(01):77.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(01):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(01):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(01):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(01):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(01):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(01):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(01):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(01):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(01):43.
[11]王凤娇,陈光化,周文. 基于SIFT的POCS图像超分辨率重建[J].计算机技术与发展,2014,24(11):39.
 WANG Feng-jiao,CHEN Guang-hua,ZHOU Wen. Multi-frame Image Super-resolution Reconstruction Based on SIFT[J].,2014,24(01):39.
[12]佳伟[],徐煜明[][],肖贤建[]. 基于小波变换和迭代反向投影的超分辨率算法[J].计算机技术与发展,2015,25(02):74.
 SONG Jia-wei[],XU Yu-ming[][],XIAO Xian-jian[]. A Super Resolution Algorithm Based on Wavelet Transform and Iterative Back Projection[J].,2015,25(01):74.
[13]李欣,崔子冠,陈杰,等. 基于局部回归和自相似性的图像超分辨率重建[J].计算机技术与发展,2016,26(10):17.
 LI Xin,CUI Zi-guan,CHEN Jie,et al. Image Super-resolution Reconstruction Based on Local Regression and Self-similarity[J].,2016,26(01):17.

更新日期/Last Update: 2017-04-01