[1]袁安鼎[],荆晓远[],吴飞[]. 基于局部信息融合的正交稀疏保留投影分析[J].计算机技术与发展,2017,27(01):61-64.
 YUAN An-ding[],JING Xiao-yuan[],WU Fei[]. Analysis of Orthogonal Sparse Preserving Projection Based on Local Information Fusion[J].,2017,27(01):61-64.
点击复制

 基于局部信息融合的正交稀疏保留投影分析()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年01期
页码:
61-64
栏目:
智能、算法、系统工程
出版日期:
2017-01-10

文章信息/Info

Title:
 Analysis of Orthogonal Sparse Preserving Projection Based on Local Information Fusion
文章编号:
1673-629X(2017)01-0061-04
作者:
 袁安鼎[1]荆晓远[1] 吴飞[2]
 1.南京邮电大学 自动化学院;2.南京邮电大学 通信与信息工程学院
Author(s):
 YUAN An-ding[1]JING Xiao-yuan[1]WU Fei[2]
关键词:
 稀疏保留投影局部近邻信息正交性迭代终止准则
Keywords:
 sparsity preserving projectionslocal neighbor informationorthogonalityiterative stopping criterion
分类号:
TP301
文献标志码:
A
摘要:
 模式识别领域对于样本分类判别的准则有很多,近期运用比较多的是将原始数据样本的稀疏重构关系保持到投影变换后的样本空间中,从而增加分类的准确性。稀疏保留投影算法( SPP)就是基于该思想发展起来的典型算法。该算法在寻找最佳投影变换时是从样本的全局角度出发,没有考虑到样本总体呈现非线性而局部线性的空间结构,样本间的局部信息对识别率同样有很大的提升作用,同时SPP算法获取的投影变化是非正交的,特征变换之间存在冗余信息,特征信息之间存在冗余的情况对于样本分类过程存在很大的干扰项。基于以上不足之处,提出基于局部信息融合的正交稀疏保留投影,将正交性以及样本间的局部结构信息融入SPP算法之中,同时在AR以及CAS-PEAL人脸库上对所提算法进行验证。
Abstract:
 There are many sample classification criterion in the field of pattern recognition,and the mostly used one recently is to maintain the sparse reconstruction relationship of original data samples to the sample space after projection transformation so as to increase the ac-curacy of classification. SPP is a typical algorithm based on the idea. In finding the optimal projection transformation,SPP is based on the global point view,however the spatial structure of the sample is nonlinear and the local linear structure is not considered. At the same time,the SPP algorithm is not orthogonal,and there is redundant information between the feature transform. Based on the above shortcom-ings,orthogonal sparse preserving projection based on local information fusion is proposed,and the orthogonality and the local structure information of samples are merged into the SPP algorithm. At the same time,the proposed algorithm is validated on the AR and CAS-PEAL face database.

相似文献/References:

[1]吴飞,荆晓远,李文倩,等.基于流形学习的整体正交稀疏保留鉴别分析[J].计算机技术与发展,2014,24(06):63.
 WU Fei,JING Xiao-yuan,LI Wen-qian,et al.Analysis of Preserving Discriminant of Holistic Orthogonal Sparsity Based on Manifold Learning[J].,2014,24(01):63.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(01):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(01):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(01):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(01):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(01):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(01):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(01):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(01):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(01):43.
[11]陈静,邱晓晖,孙娜. 基于二维Gabor小波与SPP算法的人脸识别研究[J].计算机技术与发展,2014,24(11):110.
 CHEN Jing,QIU Xiao-hui,SUN Na. Research on Face Recognition Based on 2 D Gabor Wavelet and SPP Algorithm[J].,2014,24(01):110.
[12]凌若冰[],荆晓远[],吴飞[],等. 基于流形学习的正交稀疏保留投影鉴别分析[J].计算机技术与发展,2015,25(01):66.
 LING Ruo-bing[],JING Xiao-yuan[],WU Fei[],et al. Orthogonal Sparsity Preserving Discriminant Analysis Based on Manifold Learning[J].,2015,25(01):66.

更新日期/Last Update: 2017-04-01