[1]郭会[],王丽侠[]. 基于个性化需求的拼车路径匹配算法研究[J].计算机技术与发展,2017,27(01):57-60.
 GUO Hui[],WANG Li-xia[]. Research on Carpool Path Matching Algorithm Based on Personalized Needs[J].,2017,27(01):57-60.
点击复制

 基于个性化需求的拼车路径匹配算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年01期
页码:
57-60
栏目:
智能、算法、系统工程
出版日期:
2017-01-10

文章信息/Info

Title:
 Research on Carpool Path Matching Algorithm Based on Personalized Needs
文章编号:
1673-629X(2017)01-0057-04
作者:
 郭会[1]王丽侠[2]
 1.浙江师范大学 数理与信息工程学院;2.浙江师范大学行知学院
Author(s):
 GUO Hui[1]WANG Li-xia[2]
关键词:
 出租车拼车路径匹配个性化需求环保
Keywords:
 car-sharingpath matchingindividual needsenvironmental protection
分类号:
TP301.6
文献标志码:
A
摘要:
 目前,多数城市都存在着打车难、交通拥挤、汽车造成的空气污染严重等问题,而拼车是解决上述问题的有效方法。拼车既可以缓解交通拥挤解决打车难的问题,又可以节能减排,利于环保。面向出租车拼车的个性化需求,提出相应的数学模型,将拼车问题模型化,同时设计一种基于乘客个性化需求的出租车路径匹配算法,规划最优的行车路线,为出租车司机和乘客推荐优化的行车路径和拼车对象。实验结果表明,提出的基于乘客个性化需求的拼车路径匹配算法不仅可以提高搭乘成功率,还明显降低了车辆的运行成本,有利于节能减排,合理利用资源。
Abstract:
 At present,there are some common problems such as taxi difficult to call,traffic congestion,heavy air pollution in many cities and so on. Car-sharing is an effective method to solve these problems. Car-sharing can not only ease traffic congestion and solve the problem of taking a taxi is difficult,but also reduce energy consumption and emissions to be helpful for environmental protection. A corre-sponding mathematical model is proposed and a taxi path matching algorithm is designed based on the individual needs of passengers. In addition,the best route with minimal cost and price is designed to meet the requirement of passengers as much as possible. Experimental results show that the proposed car-sharing path matching algorithm can improve success rate of car-sharing and reduce the travel cost and it is beneficial to energy conservation and emission reduction,reasonable use of resources.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(01):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(01):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(01):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(01):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(01):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(01):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(01):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(01):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(01):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(01):47.

更新日期/Last Update: 2017-04-01