[1]朱震宇,荆晓远. 基于多视图核鉴别分析的图像识别[J].计算机技术与发展,2016,26(12):92-95.
 ZHU Zhen-yu,JING Xiao-yuan. Image Recognition Based on Multi-view Kernel Discriminant Analysis[J].,2016,26(12):92-95.
点击复制

 基于多视图核鉴别分析的图像识别()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年12期
页码:
92-95
栏目:
智能、算法、系统工程
出版日期:
2016-12-10

文章信息/Info

Title:
 Image Recognition Based on Multi-view Kernel Discriminant Analysis
文章编号:
1673-629X(2016)12-0092-04
作者:
朱震宇荆晓远
 南京邮电大学 自动化学院
Author(s):
 ZHU Zhen-yuJING Xiao-yuan
关键词:
 多视图学习互补信息冗余信息核鉴别分析
Keywords:
 multi-view learningcomplementary informationredundant featureskernel discriminant analysis
分类号:
TP181
文献标志码:
A
摘要:
 近年来多视图学习引起了研究者的广泛关注。在多视图学习中,数据主要来自于多个视图(或特征集)。多视图数据的最大优点是可以从不同视图之间提取互补信息。传统多视图学习方法是在不同视图上单独地训练分类器。这些方法利用了视图之间的互补信息,但是忽略了去除不同视图之间的冗余信息。为了解决上述问题,提出一种基于多视图核鉴别分析的识别方法。该方法通过基于核判别分析从各个视图中提取出相互正交的投影矩阵,从而能够提取出兼具互补和无冗余的特征。在AR和Oxford Flowers17公共数据库上的实验结果验证了所提算法的有效性。
Abstract:
 Multi-view learning has caused wide public concern of researchers in recent years. In multi-view learning,data is mainly from many views ( or feature set) . The biggest advantage of multi-view data is that it can extract complementary information from different views. The traditional multi-view learning method learns classifiers in different views independently. These methods utilize the comple-mentary information between views,but ignore the redundant information between different views. In order to solve the above problem,a recognition method based on multi view kernel discriminant analysis is proposed. It uses kernel discriminant analysis to extract projection matrix from each view and makes the transformations orthogonal,so that it can extract both complementary and non-redundant features. Experimental results on public database like AR and Oxford Flowers17 verify the effectiveness of the algorithm proposed.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(12):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(12):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(12):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(12):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(12):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(12):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(12):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(12):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(12):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(12):47.

更新日期/Last Update: 2017-02-03