[1]王国桢,方贤勇. 基于图模型的姿态分割估计方法[J].计算机技术与发展,2016,26(12):53-57.
 WANG Guo-zhen,FANG Xian-yong. Pose Segmentation and Estimation Based on Pictorial Structure Model[J].,2016,26(12):53-57.
点击复制

 基于图模型的姿态分割估计方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年12期
页码:
53-57
栏目:
智能、算法、系统工程
出版日期:
2016-12-10

文章信息/Info

Title:
 Pose Segmentation and Estimation Based on Pictorial Structure Model
文章编号:
1673-629X(2016)12-0053-05
作者:
 王国桢方贤勇
 安徽大学 媒体计算研究所
Author(s):
 WANG Guo-zhenFANG Xian-yong
关键词:
 人体姿态图结构模型形状上下文分割
Keywords:
 human posepictorial structureshape contextsegmentation
分类号:
TP31
文献标志码:
A
摘要:
 计算机视觉领域中现在有一个非常热门的问题就是人体的姿态估计,它可用于行人检测、人体活动分析、人机交互以及视频监控等方面。目前对于图像的人体姿态的估计方法在处理较复杂的背景的时候难以得到理想的效果,其原因在于这些方法不好区分人体和复杂背景,从而无法得到其想要的特征值供其使用。针对这一不足,提出一种姿态分割估计方法。该方法将人体分割后去除复杂背景的影响,并且在图结构模型中,结合使用形状上下文特征的方法进行训练对比,求解得出最优的人体姿态。实验结果表明,该方法可以较好地在复杂背景下获得人体的姿态估计,更好地克服背景带来的干扰,得到较现有方法更加理想的人体估计结果,从而把人体的姿态从复杂的背景图像中给成功地估计出来。
Abstract:
 Human pose estimation is one of the hot topics in the field of computer vision,and can be used for pedestrian detection,human activity analysis,human-computer interaction and video surveillance and so on. It is difficult to robustly estimate the human pose under the complex background for existing estimation methods of human pose,which is partially due to the lack of good features to separate the foreground human from the complex background. Aiming at the deficiencies mentioned above,a pose segmentation and estimation method is presented. The human is segmented from the background by semantic segmentation. Then shape context method is adopted to obtain the optimal human pose in the pictorial structure. Experimental results show that the proposed method can get the pose estimation,overcome the interference from background,and obtain a better body estimation than the existing method under complex backgrounds. So it can be success to estimate the body pose from the image in a complex background.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(12):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(12):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(12):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(12):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(12):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(12):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(12):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(12):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(12):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(12):47.

更新日期/Last Update: 2017-02-03