[1]张永梅,许静,郭莎. 基于堆排序的重要关联规则挖掘算法研究[J].计算机技术与发展,2016,26(12):45-48.
 ZHANG Yong-mei,XU Jing,GUO Sha. Research on Association Rules Mining Algorithm for Main Target[J].,2016,26(12):45-48.
点击复制

 基于堆排序的重要关联规则挖掘算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年12期
页码:
45-48
栏目:
智能、算法、系统工程
出版日期:
2016-12-10

文章信息/Info

Title:
 Research on Association Rules Mining Algorithm for Main Target
文章编号:
1673-629X(2016)12-0045-04
作者:
 张永梅许静郭莎
 北方工业大学 计算机学院
Author(s):
 ZHANG Yong-meiXU JingGUO Sha
关键词:
 主要目标Apriori算法关联规则频繁项目集排序
Keywords:
main targetApriori algorithmassociation rulesfrequent itemsetssorting
分类号:
TP301
文献标志码:
A
摘要:
 现有的关联规则数据挖掘算法或方法中,获取规则的计算时间很大一部分都耗费在关联项目集的扫描、数据库频繁扫描和生成冗余候选频繁项目集中。传统方法虽然得到的挖掘结果比较全面,但并不是所有挖掘结果中的规则都是重要的,以往的方法没有反映出重要的关联规则而使得挖掘结果的有效性不高,不利于得到需要的重要目标结果。针对重要目标的挖掘,提出一种基于堆排序及链表结构的改进Apriori算法。算法通过扫描数据库,统计得到各个项目集在所有事务集中出现的频率,并按照项目集的频率次数进行堆排序。然后根据建立的堆得到所有k阶候选项目集并计算其相对应的支持度,将不同项目集的支持度与预先设定的最小支持度进行比较,若满足最小支持度,就将对应的频繁项目集加入链表中,否则依据剪枝策略剪去这个对应项,将通过连接运算生成的候选k+1阶项目集采用同样的操作可以生成k+1阶频繁项目集。这样可以很大程度上优化算法的频繁项目集的生成过程并加速了重要关联规则的生成过程,从整体上提高了运算速度。
Abstract:
 The existing association rule mining algorithms or methods waste most of their time on the correlation set database scanning,the frequent scanning and the generating of redundant frequent itemsets candidates during their rule acquisition computation. The traditional methods can get more comprehensive mining results,but not all of the rules that came from the mining result are important. Traditional methods don’ t reflect the importance of association rules so as to have inefficiency for mining results,and they are not conducive to the gaining of main target results. Aimed at the mining of important goal,an improved Apriori algorithm based on linked list structure and heap sort is proposed. The algorithm scans the whole database to get the frequency of the appearance of each item set among the whole datasets and do the heap sort. Then,according to the established heap,all the k rank candidate sets are obtained and the relative support is calculated. The support degree of different project sets is compared with the minimum support degree. If the minimum support is met,the corresponding frequent item set should be added to the list,or it should be cut according to the shear or pruning strategy. By connecting operation,the candidate k+1 order item set can be obtained from the generated k order frequent item sets,so to generate the k+1 order fre-quent item sets. In this way,the generation of frequent itemsets can be greatly improved,and the mining results of important association rules can be provided,which can improve the speed of operation.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(12):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(12):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(12):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(12):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(12):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(12):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(12):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(12):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(12):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(12):47.

更新日期/Last Update: 2017-02-03