[1]张兴兰,刘炀. 基于复杂网络及神经网络挖掘用户兴趣的方法[J].计算机技术与发展,2016,26(12):22-25.
 ZHANG Xing-lan,LIU Yang. Method of Mining User Interest Based on Complex Network and Neural Network[J].,2016,26(12):22-25.
点击复制

 基于复杂网络及神经网络挖掘用户兴趣的方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年12期
页码:
22-25
栏目:
智能、算法、系统工程
出版日期:
2016-12-10

文章信息/Info

Title:
 Method of Mining User Interest Based on Complex Network and Neural Network
文章编号:
1673-629X(2016)12-0022-04
作者:
 张兴兰刘炀
 北京工业大学 计算机学院
Author(s):
 ZHANG Xing-lanLIU Yang
关键词:
 用户行为兴趣挖掘复杂网络word2vec
Keywords:
 user behaviorinterest miningcomplex networkword2vec
分类号:
TP31
文献标志码:
A
摘要:
 按照用户的兴趣提供个性化服务是提高企业商业价值最有效的方案。针对目前从用户行为中挖掘用户兴趣方法的不足,提出一种依据用户使用软件的时间序列构建复杂网络及依据神经网络聚类挖掘用户兴趣软件的方法。在计算用户对于软件的兴趣度时,综合考虑用户使用软件的时长以及复杂网络中相邻节点的贡献度,包括节点的度、节点介数、聚集系数来判断节点的重要性,挖掘用户对于软件的兴趣度,形成软件兴趣社区。再利用神经网络算法对用户兴趣社区中的软件进行聚类,形成用户的兴趣软件集。实验结果表明,该方法能够较准确地挖掘用户感兴趣的软件集,并且在精确率和召回率上较其他方法有一定的提高。
Abstract:
 Providing personalized service according to the user’ s interest is the most effective solution to improve the commercial value. Aiming at the problem of mining user’ s interest method from user behavior,a method of constructing complex network based on time se-ries and neural network clustering is proposed,which is based on the user’ s software. In the calculation of user interest in software,the u-sing time and adjacent nodes are considered including node degree,betweenness and clustering coefficient to determine the node impor-tance for mining user for the degree of interest for the software,forming of interest community. Then the neural network is used to cluster the software in the user interest community. The experiments show that this method can be more accurate than other methods to mine the user’ s interest,and the accuracy rate and recall rate of the algorithm is improved.

相似文献/References:

[1]王攀 张顺颐 陈雪娇.基于动态行为轮廓库的Web用户行为分析关键技术[J].计算机技术与发展,2009,(02):20.
 WANG Pan,ZHANG Shun-yi,CHEN Xue-jiao.Key Technology of Web Users' Behavior Analysis Based on Dynamic Behavior Profile Database[J].,2009,(12):20.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(12):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(12):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(12):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(12):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(12):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(12):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(12):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(12):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(12):43.
[11]周强[],李曦[]. 基于推荐技术的中国音乐数据库系统的设计[J].计算机技术与发展,2015,25(07):162.
 ZHOU Qiang[],LI Xi[]. Design of Database System of Chinese Music Based on Recommendation Technology[J].,2015,25(12):162.

更新日期/Last Update: 2017-02-03