[1]谈苗苗,成孝刚,周凯,等. 基于ARIMA和灰色模型加权组合的短期交通流预测[J].计算机技术与发展,2016,26(11):77-81.
 TAN Miao-miao,CHENG Xiao-gang,ZHOU Kai,et al. Short-term Traffic Flow Forecasting Based on Combination of ARIMA and Gray Model[J].,2016,26(11):77-81.
点击复制

 基于ARIMA和灰色模型加权组合的短期交通流预测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年11期
页码:
77-81
栏目:
智能、算法、系统工程
出版日期:
2016-11-10

文章信息/Info

Title:
 Short-term Traffic Flow Forecasting Based on Combination of ARIMA and Gray Model
文章编号:
1673-629X(2016)11-0077-05
作者:
 谈苗苗成孝刚周凯李海波
 南京邮电大学 通信与信息工程学院
Author(s):
 TAN Miao-miaoCHENG Xiao-gangZHOU KaiLI Hai-bo
关键词:
 数据融合ARIMA 灰色模型加权小波分析
Keywords:
 data fusionARIMA gray modelweighted wavelet analysis
分类号:
U491.112
文献标志码:
A
摘要:
 交通流预测是智能交通系统至关重要的一部分,应用于交通流预测的方法非常多,由于实际路况的复杂性和单个方法的局限性,现有方法的精确度亟待提高。为解决这一问题,采用数据融合的方法,对传感器采集的原始数据做数据预处理,利用小波分析去除信号多余的噪声,然后利用ARIMA模型和灰色模型分别对同一交通流序列进行建模,得出两者各自的预测结果后,找出最佳权值对两种模型的结果进行加权,得到数据融合后的预测结果。仿真结果表明,该组合模型改善了单个预测方法的短处,使得预测精度有所提高。
Abstract:
 Traffic flow forecasting is a very important part of the intelligent transportation system. There are many methods for traffic flow forecasting,most of them have good results for the traffic flow. However,due to the limitations of a single forecasting method,it cannot guarantee the accuracy of prediction in different situations. In order to solve this problem,the method of data fusion is used. The original data by sensors is carried out in data preprocessing,using wavelet analysis to remove the excess noise. Then,the ARIMA model and gray model are used to model the same traffic flow series. After the results of the two projections are come out,getting the optimal weights,and the results of the two models are weighted,and the results are obtained after data fusion. The simulation results show that the combination model improves the shortcomings of the single forecasting method,which makes the prediction accuracy improved.

相似文献/References:

[1]张登银 薄顺荣 许扬扬.边缘检测算法改进及其在QoE测定中的应用[J].计算机技术与发展,2009,(08):49.
 ZHANG Deng-yin,BO Shun-rong,XU Yang-yang.Improved Image Edge Detection Algorithm and Its Application in QoE Measurement[J].,2009,(11):49.
[2]王国芳 李腊元.基于LEACH和PEGASIS的节能可靠路由协议研究[J].计算机技术与发展,2009,(11):115.
 WANG Guo-fang,LI La-yuan.Research on Energy- Saving and Reliable Routing Protocol Based on LEACH and PEGASIS[J].,2009,(11):115.
[3]陶玉贵.车载GPS组合测速系统数据融合算法研究[J].计算机技术与发展,2009,(01):200.
 TAO Yu-gui.Study on Data Fusion Algorithm for GPS Integrated Vehicle Velocity Testing System[J].,2009,(11):200.
[4]王丽 杨全胜.多传感器数据融合的一种方法[J].计算机技术与发展,2008,(02):80.
 WANG Li,YANG Quan-sheng.A Method ,for Data Fusion of Multi - Sensor[J].,2008,(11):80.
[5]郭文普 孙继银 任俊.一种基于数据融合的分布式入侵检测系统[J].计算机技术与发展,2006,(02):217.
 GUO Wen-pu,SUN Ji-yin,REN Jun.A Kind of Distributed IDS Based on Data Fusion[J].,2006,(11):217.
[6]徐飞 钟联炯.一种多传感器数据融合仿真平台的构建与设计[J].计算机技术与发展,2006,(07):212.
 XU Fei,ZHONG Lian-jiong.Design of a Multi - sensor Data Fusion Simulation Platform[J].,2006,(11):212.
[7]王娟 王汝传 孙力娟.数据融合在传感器网络协议中的节能性分析[J].计算机技术与发展,2006,(11):4.
 WANG Juan,WANG Ru-chuan,SUN Li-juan.Energy - Saving Analysis of Data Aggregation in Sensor Network Protocol[J].,2006,(11):4.
[8]吴凡 胡斌杰.数据融合算法在ZigBee网络中的应用研究[J].计算机技术与发展,2011,(02):226.
 WU Fan,HU Bin-jie.Application Research of Data Fusion Algorithm in ZigBee Network[J].,2011,(11):226.
[9]李向阳 李玲娟 陈建新 徐小龙.面向情境感知的不确定性数据融合策略[J].计算机技术与发展,2012,(02):127.
 LI Xiang-yang,LI Ling-juan,CHEN Jian-xin,et al.Strategy of Uncertainty Data Fusion for Context-Awareness[J].,2012,(11):127.
[10]李向阳 李玲娟 陈建新 徐小龙.数据融合在智能电网中的应用研究[J].计算机技术与发展,2012,(04):215.
 LI Xiang-yang,LI Ling-juan,CHEN Jian-xin,et al.Research on Application of Data Fusion in Smart Grid[J].,2012,(11):215.
[11]季田辉,杨庚. 无线传感器网络中安全数据融合方法研究[J].计算机技术与发展,2014,24(07):162.
 JI Tian-hui,YANG Geng. Research on Security of Data Aggregation in Wireless Sensor Networks[J].,2014,24(11):162.
[12]唐亚鹏. 基于自适应加权数据融合算法的数据处理[J].计算机技术与发展,2015,25(04):53.
 TANG Ya-peng. Data Processing Based on Adaptive Weighted Data Fusion Algorithm[J].,2015,25(11):53.
[13]齐华[],李晓[],刘军[],等. 面向污水监控系统的自适应加权数据融合算法[J].计算机技术与发展,2015,25(04):221.
 QI Hua[],LI Xiao[],LIU Jun[],et al. Adaptive Weighted Data Fusion Algorithm Faced to Wastewater Monitoring System[J].,2015,25(11):221.
[14]吕传龙[],曹华杰[],刘浩东[]. 自平衡机器人中数据融合算法的研究与实现[J].计算机技术与发展,2016,26(08):35.
 LV Chuan-long[],CAO Hua-jie[],LIU Hao-dong[]. Research and Implementation of Data Fusion Algorithm for Self-balancing Robot[J].,2016,26(11):35.
[15]张淑雯,刘效武,孙雪岩. 基于多源融合的网络安全态势层次感知[J].计算机技术与发展,2016,26(10):77.
 ZHANG Shu-wen,LIU Xiao-wu,SUN Xue-yan. Hierarchical Awareness of Network Security Situation Based on Multi-source Fusion [J].,2016,26(11):77.
[16]杨月平,王箭. 基于k-匿名的多源数据融合算法研究[J].计算机技术与发展,2017,27(05):102.
 YANG Yue-ping,WANG Jian. Research on Data Fusion Algorithm for Multi-party Based on k-anonymity[J].,2017,27(11):102.
[17]高晓利[],李捷[][]. 基于模糊变结构动态贝叶斯网的目标识别方法[J].计算机技术与发展,2017,27(09):17.
 GAO Xiao-li[],LI Jie[][]. A Target Identification Method of Dynamic Bayesian Network with Fuzzy Variable Structure[J].,2017,27(11):17.

更新日期/Last Update: 2016-12-09