[1]吴佳,苏丹,李环媛,等. 一种基于交互式的Hadoop作业调度算法[J].计算机技术与发展,2016,26(11):45-48.
 WU Jia,SU Dan,LI Huan-yuan,et al. An Job Scheduling Algorithm for Hadoop Based on Interaction[J].,2016,26(11):45-48.
点击复制

 一种基于交互式的Hadoop作业调度算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年11期
页码:
45-48
栏目:
智能、算法、系统工程
出版日期:
2016-11-10

文章信息/Info

Title:
 An Job Scheduling Algorithm for Hadoop Based on Interaction
文章编号:
1673-629X(2016)11-0045-04
作者:
 吴佳苏丹李环媛袁卫国
 国网冀北电力有限公司信息通信分公司 信息通信工程中心
Author(s):
 WU JiaSU DanLI Huan-yuanYUAN Wei-guo
关键词:
 HadoopMapReduce 交互式slots资源槽IS调度
Keywords:
 HadoopMapReduceinteractionslots IS scheduling
分类号:
TP393
文献标志码:
A
摘要:
 Hadoop平台中作业调度是一个重要环节。 FIFO是Hadoop默认的调度算法,简单易实现且应用广泛,但其在数据的本地化( data locality)这一特性上考虑不足,会引起网络的负载量增大,任务的等待执行时间长,计算资源得不到充分利用等一系列弊端;同时Map阶段和Reduce阶段资源槽的静态职能形式也更一步加深了这种缺陷。针对这些缺陷,从数据的本地性、任务分配的角度出发,提出了一种基于主从节点间交互的作业调度算法( Interactive Scheduler,IS)。该算法是对FIFO的一种改进,同时也使不同资源槽之间可以动态转换,提高了资源的使用率。通过实验对比,结果表明IS调度算法对Hadoop平台的作业调度效率有显著的提升。
Abstract:
 Job scheduling is an important part of Hadoop. FIFO,as a scheduling algorithm by Hadoop,is simple and easy to achieve and widely used,but it is lack of consideration in the characteristic of data locality,that will cause network transmission increased and task waiting long execution time and computing resources cannot be fully utilized and a series of drawbacks. Meanwhile the static function of resource slots in Map and Reduce stages further increases the defects. So a job scheduling algorithm ( Interactive Scheduler,IS) based on interacting the master node and slave nodes from the data locality and tasks allocation is proposed,which is improvement for FIFO,and realizes the dynamic conversion of map slots and reduce slots,and increases the usage of resources. Through the comparison of experi-ment,it proves that the IS has a great improvement in job scheduling for Hadoop.

相似文献/References:

[1]李远方 邓世昆 闻玉彪 韩月阳.Hadoop-MapReduce下的PageRank矩阵分块算法[J].计算机技术与发展,2011,(08):6.
 LI Yuan-fang,DENG Shi-kun,WEN Yu-biao,et al.PageRank Matrix Partitioned Algorithm Using Hadoop-MapReduce[J].,2011,(11):6.
[2]李远方 贾时银 邓世昆 韩月阳.基于树结构的MapReduce模型[J].计算机技术与发展,2011,(08):149.
 LI Yuan-fang,JIA Shi-yin,DENG Shi-kun,et al.MapReduce Model Based on Tree Structure[J].,2011,(11):149.
[3]王梅,朱信忠,赵建民,等.基于 Hadoop 的海量图像检索系统[J].计算机技术与发展,2013,(01):204.
 WANG Mei,ZHU Xin-zhong,ZHAO Jian-min,et al.Massive Images Retrieval System Based on Hadoop[J].,2013,(11):204.
[4]王晓军,孙惠.基于MapReduce的多路连接优化方法研究[J].计算机技术与发展,2013,(06):59.
 WANG Xiao-jun,SUN Hui.Research of Optimizing Multiway Joins Based on MapReduce[J].,2013,(11):59.
[5]朱贤军,李敬兆.无加密模式下对云数据的隐私保密[J].计算机技术与发展,2013,(06):216.
 ZHU Xian-jun,LI Jing-zhao.Cloud Data Privacy under None Encryption[J].,2013,(11):216.
[6]周婷,张君瑛,罗成.基于Hadoop的K-means聚类算法的实现[J].计算机技术与发展,2013,(07):18.
 ZHOU Ting[],ZHANG Jun-ying[],LUO Cheng[].Realization of K-means Clustering Algorithm Based on Hadoop[J].,2013,(11):18.
[7]吕婉琪,钟诚,唐印浒,等.Hadoop分布式架构下大数据集的并行挖掘[J].计算机技术与发展,2014,24(01):22.
 L Wan-qi,ZHONG Cheng,TANG Yin-hu,et al.Parallel Mining of Large Dataset in Hadoop Distributed Computing Framework[J].,2014,24(11):22.
[8]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(11):1.
[9]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(11):5.
[10]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(11):13.
[11]王晓军,邹亮亮. Hadoop迭代优化技术的研究[J].计算机技术与发展,2014,24(09):98.
 WANG Xiao-jun,ZOU Liang-liang. Research on Optimizing Iterative Technology of Hadoop[J].,2014,24(11):98.
[12]徐源吾[][],王珣[][]. 基于Hadoop的智能家居信息处理平台[J].计算机技术与发展,2014,24(09):183.
 XU Yuan-wu[] [],WANG Xun[][]. nformation Processing Platform of Smart Home Based on Hadoop[J].,2014,24(11):183.
[13]孙媛,黄刚. 基于Hadoop平台的C4.5算法的分析与研究[J].计算机技术与发展,2014,24(11):83.
 SUN Yuan,HUANG Gang. Analysis and Study of C4 . 5 Algorithm Based on Hadoop Platform[J].,2014,24(11):83.
[14]王全民,苗雨,何明,等. 基于矩阵分解的协同过滤算法的并行化研究[J].计算机技术与发展,2015,25(02):55.
 ANG Quan-min,MIAO Yu,HE Ming,et al. Parallelized Research on Collaborative Filtering Algorithm Based on Matrix Factorization[J].,2015,25(11):55.
[15]方木云,刘洪彬,谢恩文. Hadoop下基于边聚类的重叠社区发现算法研究[J].计算机技术与发展,2015,25(03):58.
 FANG Mu-yun,LIU Hong-bin,XIE En-wen. Research on Overlapping Communities Detecting Algorithm Using Hadoop Based on Edge Clustering[J].,2015,25(11):58.
[16]秦军[],童毅[],戴新华[],等. 基于MapReduce数据密集型负载调度策略研究[J].计算机技术与发展,2015,25(04):48.
 QIN Jun[],TONG Yi[],DAI Xin-hua[],et al. Research on Scheduling Strategy of Data Intensive Workloads Based on MapReduce[J].,2015,25(11):48.
[17]徐新瑞,孟彩霞,周雯,等. 一种基于Spark时效化协同过滤推荐算法[J].计算机技术与发展,2015,25(06):48.
 XU Xin-rui,MENG Cai-xia,ZHOU Wen,et al. A Real-time Collaborative Filtering Recommendation Algorithm Based on Spark[J].,2015,25(11):48.
[18]李晨,杨子江,朱世伟,等. 基于Hadoop的网络舆情监控平台设计与实现[J].计算机技术与发展,2016,26(02):144.
 LI Chen,YANG Zi-jiang,ZHU Shi-wei,et al. Design and Implementation of Network Consensus Monitoring System Based on Hadoop[J].,2016,26(11):144.
[19]马腾腾[],朱庆华[],曹菡[],等. 基于Hadoop的旅游景点推荐的算法实现与应用[J].计算机技术与发展,2016,26(03):47.
 MA Teng-teng[],ZHU Qing-hua[],CAO Han[],et al. Implementation and Application of Algorithm of Tourist Attractions Recommendation Based on Hadoop[J].,2016,26(11):47.
[20]李正杰,黄刚. 基于Hadoop平台的SVM KNN分类算法的研究[J].计算机技术与发展,2016,26(03):75.
 LI Zheng-jie,HUANG Gang. Research on SVM KNN Classification Algorithm Based on Hadoop Platform[J].,2016,26(11):75.

更新日期/Last Update: 2016-12-09