[1]唐莉[],张正军[],王俐莉[]. 人工鱼群算法的改进[J].计算机技术与发展,2016,26(11):37-40.
 TANG Li[],ZHANG Zheng-jun[],WANG Li-l. Improvement of Artificial Fish Swarm Algorithm[J].,2016,26(11):37-40.
点击复制

 人工鱼群算法的改进()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年11期
页码:
37-40
栏目:
智能、算法、系统工程
出版日期:
2016-11-10

文章信息/Info

Title:
 Improvement of Artificial Fish Swarm Algorithm
文章编号:
1673-629X(2016)11-0037-04
作者:
 唐莉[1] 张正军[1] 王俐莉[2]
 1.南京理工大学 理学院;2.海军指挥学院 科研部
Author(s):
 TANG Li[1] ZHANG Zheng-jun[1] WANG Li-l
关键词:
 随机行为拥挤度因子适应度函数人工鱼群算法优化
Keywords:
 random behaviorcongestion factorfitness functionartificial fish swarm algorithmoptimization
分类号:
TP301.6
文献标志码:
A
摘要:
 人工鱼群算法( AFSA)是一种新型随机搜索优化算法。通过初步的研究表明,该算法具有许多优良的性质,但也有一些不足之处。针对均匀随机行为和常数拥挤度因子而导致算法运行时间长或陷入局部最优的问题,引入对称正态随机行为,自适应调整该行为参数,减少了由于迂回搜索导致的无用计算,也使人工鱼可在解空间进行更为广泛的搜索,提高了搜索效率。采用了自适应拥挤度因子并提出新的适应度函数,加快了系统满意解的收敛速度,使数值解更加稳定。实验结果表明,与基本人工鱼群算法相比,该方法具有明显的优越性。
Abstract:
 Artificial Fish Swarm Algorithm ( AFSA) is a new random search optimization algorithm. The preliminary study shows that it has many promising features,but also some disadvantages. Aiming at the problem of AFSA,such as long running time or being in local optimal,caused by uniformly random behavior and constant of congestion factor. Based on symmetric normality random behavior,self-a-daption adjusts the parameter of this behavior,and a large number of unused circuitous searches are reduced,and a more complete search within solution space is obtained for artificial fishes so that a high search efficiency is arrived at. The self-adaption congestion factor is a-dopted and a new fitness function is porposed,increasing the convergence rate of satisfactory solution domain,making the result more sta-ble. Results of experiments show that there is an obvious advantage for this improved method compared with the basic artificial fish-swarm algorithm.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(11):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(11):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(11):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(11):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(11):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(11):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(11):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(11):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(11):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(11):47.

更新日期/Last Update: 2016-12-09