[1]武文亮,张志斌,李王东岳. 温室作物生长环境的主成分分析[J].计算机技术与发展,2016,26(10):165-168.
 WU Wen-liang,ZHANG Zhi-bin,LI Wang-dongyue. Principal Component Analysis of Greenhouse Crop Growth Environment[J].,2016,26(10):165-168.
点击复制

 温室作物生长环境的主成分分析()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年10期
页码:
165-168
栏目:
应用开发研究
出版日期:
2016-10-10

文章信息/Info

Title:
 Principal Component Analysis of Greenhouse Crop Growth Environment
文章编号:
1673-629X(2016)10-0165-04
作者:
 武文亮张志斌李王东岳
 内蒙古大学 计算机学院
Author(s):
 WU Wen-liangZHANG Zhi-binLI Wang-dongyue
关键词:
 主成分分析温室作物生长环境无线传感器网络
Keywords:
 principal component analysisgreenhouse cropsgrowth environmentwireless sensor network
分类号:
TP39
文献标志码:
A
摘要:
 温室大棚可以帮助瓜果蔬菜在其非时令季节提供生长环境和增加产量。由于季节对于植物自然生长的不适宜性,因此作物对于温室大棚的生长环境要求就要精确得多。通过搭建Zigbee无线传感器网络有效地对温室草莓生长的空气湿度、土壤湿度、土壤盐碱度、温度、CO2浓度及光照六个指标进行了长期的数据采集,并尝试通过主成分分析的方法来分析影响温室草莓育苗期生长的关键因素。通过对育苗期温室草莓的上述六个环境指标进行主成分分析,分析所得的三个主分量的贡献率分别为44.57%、29.00%和15.83%,累计贡献率可达到89.40%。因此,可以用这三个主分量代替原有的六个单项指标反映原指标的绝大部分信息对温室草莓生长环境进行研究,且使得各综合指标所代表的信息不再重叠。有助于实现温室种植的再生产以及高效的、精准化的管理。
Abstract:
 Greenhouses can provide fruits and vegetables with growth environment in its non-growth seasons and help increase their pro-duction. The greenhouses environment requirements are more accurate because of the inappropriate season for plants growth naturally. There mainly involves six indicators of greenhouse strawberry growth environment including air humidity,soil moisture,alkalinity,tem-perature,CO2 ,and light-intensity. Relative data is collected by the wireless sensor network for a long time,and principal component anal-ysis is applied to analyze the key factors influencing the greenhouse crop growth during the seeding period of green strawberry. The analy-sis shows that there are three principal components and their contribution rate are 44. 57%,29. 00% and 15. 83% respectively. The cumu-lative contribution rate can reach 89. 40% and therefore these three principal components can be used to replace the original six indicators to reflect the original greenhouse strawberry growth environment information and to represent the information no longer overlap,which is very important to the reproduction of same plants and can enable them to improve the efficiency and accuracy of greenhouse cultivation management greatly.

相似文献/References:

[1]夏玫 陈立潮 王新波.一种提高BP神经网络泛化能力的改进算法[J].计算机技术与发展,2009,(09):62.
 XIA Mei,CHEN Li-chao,WANG Xin-bo.A Modified Algorithm to Improve Generalization Ability of BP Neural Network[J].,2009,(10):62.
[2]宋世刚 粘永健 李纲.面向目标检测的高光谱图像压缩技术[J].计算机技术与发展,2009,(11):1.
 SONG Shi-gang,NIAN Yong-jian,LI Gang.Hyperspectral Image Compression Employing Target Detection[J].,2009,(10):1.
[3]张瑞霞 王勇.融合PCA和LDA的入侵检测算法[J].计算机技术与发展,2009,(11):132.
 ZHANG Rui-xia,WANG Yong.Fusion of PCA and LDA for Intrusion Detection[J].,2009,(10):132.
[4]俞小娟 胡金柱 李琼 周毕吉.用主成分分析法研究短语字段的判别因素[J].计算机技术与发展,2008,(10):116.
 YU Xiao-juan,HU Jin-zhu,LI Qiong,et al.Studying Factors of Judging Phrase Fields by Method of Principal Component Analysis[J].,2008,(10):116.
[5]刘树利 胡茂林.基于不同视角的人脸模型识别方法[J].计算机技术与发展,2006,(06):213.
 LIU Shu-li,HU Mao-lin.Recognition of Human Face in Different Pose[J].,2006,(10):213.
[6]王辉.主成分分析及支持向量机在人脸识别中的应用[J].计算机技术与发展,2006,(08):24.
 WANG Hui.Application in Human Face Recognition Based on Principal Component Analysis and Support Vector Machine[J].,2006,(10):24.
[7]张靖 葛玮 郝克刚.软件度量中主成分分析方法的研究[J].计算机技术与发展,2006,(12):144.
 ZHANG Jing,GE Wei,HAO Ke-gang.Research of Principal Component Analysis in Software Metrics[J].,2006,(10):144.
[8]职为梅 范明.样本大小对稀有类分类的影响[J].计算机技术与发展,2011,(05):9.
 ZHI Wei-mei,FAN Ming.Impact of Sample Size for Rare-Class Classification[J].,2011,(10):9.
[9]邓炳荣 伍世元 武琳 邵雅雯 李江勇.一种基于计算机嗅觉的卷烟等级识别方法[J].计算机技术与发展,2011,(11):177.
 DENG Bing-rong,WU Shi-yuan,WU Lin,et al.Application of Electronic Nose in Discrimination of Different Levels Cigarette[J].,2011,(10):177.
[10]杨晓斌 周宁宁 杨婷婷.基于统计处理图像放大方法在人脸识别中应用[J].计算机技术与发展,2011,(12):55.
 YANG Xiao-bin,ZHOU Ning-ning,YANG Ting-ting.Application of an Image Magnification Method Based on Statistical Processing in Face Recognition[J].,2011,(10):55.
[11]李利杰[],张君华[],熊伟清[],等. 一种改进的支持向量机模型优化算法[J].计算机技术与发展,2014,24(12):114.
 LI Li-jie[],ZHANG Jun-hua[],XIONG Wei-qing[],et al. An Improved Algorithm for Model Optimization of Support Vector Machine[J].,2014,24(10):114.
[12]吴粉侠,段群. 基于NSCT的PCA与PCNN相结合的图像融合算法[J].计算机技术与发展,2015,25(12):72.
 WU Fen-xia,DUAN Qun. Image Fusion Algorithm Combining PCNN and PCA Based on NSCT[J].,2015,25(10):72.
[13]李远博,曹菡. 基于PCA降维的协同过滤推荐算法[J].计算机技术与发展,2016,26(02):26.
 LI Yuan-bo,CAO Han. Collaborative Filtering Recommendation Algorithm Based on PCA Dimension Reduction[J].,2016,26(10):26.
[14]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(10):19.
[15]陆超. PCA方法的运动轨迹检测算法研究[J].计算机技术与发展,2017,27(05):179.
 LU Chao. Research on Motion Trajectory Detection Algorithm with PCA[J].,2017,27(10):179.
[16]吕颢[],刘峰[],干宗良[],等. 基于字典学习的模糊车牌中文字符识别[J].计算机技术与发展,2017,27(11):75.
 LYU Hao[],LIU Feng[],GAN Zong-liang[],et al. Chinese Character Recognition in Fuzzy Vehicle Plate Based on Dictionary Learning[J].,2017,27(10):75.
[17]吴春香,张建明.无线感知网络中动作识别的滤波算法[J].计算机技术与发展,2018,28(05):86.[doi:10.3969/j.issn.1673-629X.2018.05.020]
 WU Chun-xiang,ZHANG Jian-ming.Filtering Algorithm for Motion Recognition in Wireless Sensor Networks[J].,2018,28(10):86.[doi:10.3969/j.issn.1673-629X.2018.05.020]

更新日期/Last Update: 2016-11-29